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1 What is Philosophy of Mathematics?

Philosophers have been fascinated by mathematics right from the beginning
of philosophy, and it is easy to see why: The subject matter of mathematics—
numbers, geometrical figures, calculation procedures, functions, sets, and so
on—seems to be abstract, that is, not in space or time and not anything to
which we could get access by any causal means. Still mathematicians seem
to be able to justify theorems about numbers, geometrical figures, calcula-
tion procedures, functions, and sets in the strictest possible sense, by giving
mathematical proofs for these theorems. How is this possible? Can we actu-
ally justify mathematics in this way? What exactly is a proof? What do we
even mean when we say things like ‘The less-than relation for natural num-
bers (non-negative integers) is transitive’ or ‘there exists a function on the
real numbers which is continuous but nowhere differentiable’? Under what
conditions are such statements true or false? Are all statements that are
formulated in some mathematical language true or false, and is every true
mathematical statement necessarily true? Are there mathematical truths
which mathematicians could not prove even if they had unlimited time and
economical resources? What do mathematical entities have in common with
everyday objects such as chairs or the moon, and how do they differ from
them? Or do they exist at all? Do we need to commit ourselves to the
existence of mathematical entities when we do mathematics? Which role
does mathematics play in our modern scientific theories, and does the em-
pirical support of scientific theories translate into empirical support of the
mathematical parts of these theories?

Questions like these are among the many fascinating questions that get
asked by philosophers of mathematics, and as it turned out, much of the
progress on these questions in the last century is due to the development of
modern mathematical and philosophical logic.
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2 Logic in Philosophy of Mathematics

The pioneer of both modern logic and modern philosophy of mathematics
was the German mathematician and philosopher Gottlob Frege (1848–1925).1

On the one hand, Frege devised the very first formal language in which var-
ious mathematical theorems could be formulated in absolutely precise and
non-ambiguous terms, and the very first formal system in which much of
the reasoning of mathematicians could be carried out in a way that made
it possible in principle to check mechanically whether a sequence of state-
ments was a proof or not. On the other hand, Frege tried to show—by proof
again—that much of classical mathematics could actually be reduced to logic
alone. This view of mathematics is called Logicism: First, Frege would de-
fine mathematical concepts such as natural number, 0, less-than (for natural
numbers), and so on, on the basis of purely logical concepts such as ¬ (not),
∨ (or), → (if-then), ∃ (there exists), ∀ (for all), = (identity), and the like.
Secondly, once all the mathematical concepts in a mathematical theorem had
been replaced by the logical concepts that defined them, he would derive the
theorem by purely logical rules of inference from purely logical axioms.

While Frege’s work led to incredible progress in logic and the philosophy
of mathematics, the ultimate formal system that he worked with happened to
be inconsistent—a contradictory statement such as A∧¬A could be derived
in it, by first using some of Frege’s axioms in order to prove the existence
of a set X of all sets that do not include themselves as members, and then
deriving a contradiction from the observation that X is a member of itself
if and only if it is not a member of itself. This was pointed out to Frege by
the British philosopher Bertrand Russell (1872–1970), who himself—together
with Alfred North Whitehead —became famous through their monumental
Principia Mathematica in which they tried to reduce mathematics to logic
again, but this time without any contradictory conclusions. Modern set
theory, which is still part of mathematical logic, and which had a tremendous
impact on all areas of modern mathematics by becoming at the same time the
universal language and the foundational system of axioms for mathematics,
did not exactly follow the logicist lines of Frege or Russell and Whitehead,
but at least it became clear that more or less all mathematical concepts
could be reduced to combinations of logical concepts and the concept of set

1There is a very nice entry by Zalta (2008) on Frege in the Stanford Encyclopedia of
Philosophy which is freely accessibly at http://plato.stanford.edu in the worldwide web.
Accordingly, check out Horsten’s (2007) entry on Philosophy of Mathematics there.
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membership (∈), and more or less all known mathematical theorems could
be derived from logical axioms in combination with the axioms of set theory,
that is, the axioms governing ∈.2 However, most philosophers of mathematics
today consider the concept of membership as properly mathematical, rather
than purely logical, and some of the axioms of set theory are no longer
counted as logical axioms either: for instance, the set-theoretic axiom of
infinity, which postulates the existence of an infinite set, is now taken to be
a properly mathematical axiom rather than an axiom of pure logic, since it
is part of our modern conception of logic that logic ought to be neutral or
silent with respect to all questions of existence.3

In similar ways, all modern schools in the philosophy of mathematics owe
a lot to logical ideas, logical concepts, and logical results.4

For instance, classical mathematics’ once great rival Intuitionism (just
as the closely related school of Constructivism) rejects the logical law of the
excluded middle (A ∨ ¬A) and demands generally for the proof of an exis-
tence claim ∃xP (x) a procedure by which an instance P (a) can be actually
constructed or determined. The development of formal systems of intuition-
istic logic, intuitionistic arithmetic, and constructive set theory, and their
comparison with formal systems of classical logic and mathematics, all of
which being topics of mathematical logic, certainly added significantly to the
understanding of this view of mathematics, even though the founder of In-
tuitionism, the Dutch mathematician Luitzen E.J. Brouwer (1881–1966), de-
liberately understood mathematics in informal and non-logic-oriented terms.

More recently, Structuralism, which takes the existence and properties of

2Recently, category theory has been challenging the role of set theory as being the
universal framework for mathematics. It is hotly debated whether there are parts of
modern mathematics that go beyond set theory but not beyond category theory.

3Since the 1980s, Neo-Logicists/Neo-Fregeans have revived some of Frege’s original
ideas on Logicism by trying to reduce mathematics to principles of second-order logic
and so-called abstraction principles. Second-order logic—in contrast with first-order logic,
which is the logic of quantifier expressions ∃x and ∀x that speak about individual objects
x—includes logical axioms and rules for quantifier expressions ∃P and ∀P which quantify
over sets P (or properties P or concepts P , depending on one’s favourite interpretation).
It is still a matter of controversy whether second-order logic is proper logic or whether
it is really set theory “in disguise”, as W.V. Quine maintained. Abstraction principles
are principles which state the identity conditions of objects of a certain kind, such as
numbers. See Hale and Wright (2001) for the most extensive Neo-Fregean reconstruction
of mathematics to date.

4There are entries in the Stanford Encyclopedia of Philosophy on all of these schools.
The standard collection of articles on all of them is Benacerraf and Putnam (1983).
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mathematical individuals to be derivative from the existence and properties
of structures—so that e.g. the nature of the natural number 2 is exhausted
by the fact that it comes third in the successor relation 0−1−2−3−4−. . .—
has traded on logical methods. For instance: While first-order axiomatisa-
tions of arithmetic are provably incapable of excluding unintended interpre-
tations of the symbols of arithmetic5, there are second-order axiomatisations
of arithmetic—most famously, the system of the second-order (Dedekind-
)Peano axioms—which are provably categorical in the sense that every two
models of such a system of axioms are isomorphic to each other, that is,
have the same structure. This categoricity theorem, which was proven by
the German mathematician Richard Dedekind already in the 19th century,
and which may be called a model-theoretic theorem (model theory being a
part of logic again), explains therefore how and why we might be able to
get epistemic access to mathematical structures such as the one of the natu-
ral numbers: by their categorical second-order axiomatisations (see Shapiro
1997 for more on this).

Similarly, Nominalism about mathematics, according to which there are
no abstract objects at all even though mathematical theories may still be
used to shorten longish purely logical derivations of statements about the
physical world from other statements about the physical world, experienced
a much richer, more precise, and much more sophisticated revival by means of
logical theorems than it had ever had before in the traditional metaphysical
debates between Realists and Nominalists: Hartry Field’s Science Without
Numbers (Field 1980), which formulates physical theories without reference
to numbers on the basis of representation theorems that were once proven in
what one might now call the model theory of geometry, is the most famous
example.

But without doubt the most drastic impact that a logical result ever
had on a school in the philosophy of mathematics is the impact that Kurt
Gödel’s (1931) famous Incompleteness Theorems6 had on Formalism, which

5There is a whole branch of mathematical logic which deals with such non-standard
models of arithmetic or with non-standard models of mathematical theories more generally.

6Boolos, Burgess, and Jeffrey (2002) is a classical introduction to the theorems. Smith
(2009) is a recent and detailed reconstruction of the Incompleteness Theorems which is
accessible also to non-mathematicians. Hájek and Pudlák (1991) is recent mathematical
treatment of formal systems of first-order arithmetic in general. Raatikainen (2005) and
Torkel Franzén’s Gödel’s Theorem. An Incomplete Guide to Its Use and Abuse (Franzen
2005) give excellent surveys of the philosophical significance of the Incompleteness Theo-
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is the topic of the next section.

3 Formalism and Formal Systems

David Hilbert (1862–1943), one of the most famous mathematicians of his
time and the most important proponent of Formalism ever, only accepted a
particular fragment of the arithmetic of natural numbers—call it elementary
arithmetic—as being completely beyond doubt, in light of our immediate
intuitive grasp of natural numbers as sequences of strokes that one could
manipulate by erasing or adding strokes according to elementary rules.7 The
rest of mathematics was acceptable to Hilbert only as some kind of formal
game with symbols, where the meaning that got ascribed to these symbols
in the course of the game was not relevant at all. Instead, the rules of such
mathematical games were to be formulated by purely syntactical means and
this had to be done as precisely as Frege once had formulated the rules of
his system of logic, or otherwise the rules of the game would remain unclear.
Once again it should be possible in principle to check for each sequence of
formulas—for each sequence of moves in the game—whether the sequence
was a proof according to the rules of the game or not. So, first of all, all the
mathematical theories that one cared about needed to be reconstructed in
terms of formal systems.

Any such a formal system S—which today is called also ‘recursively ax-
iomatised theory’—is given by:

1. A formal language LS which is specified by listing the syntactic rules by
which the formulas of the language can be generated in a systematic
manner. For instance, since 2 + 2 = 4 is a formula of the language
of elementary arithmetic, also ¬ 2 + 2 = 4 (it is not the case that
2 + 2 = 4) is a formula of the same language. Of course, we regard
2+2 = 4 as true and ¬ 2+2 = 4 as false, since we automatically supply
these symbols with a particular intended interpretation, but that does
not actually matter at this point—it only matters that both are well-
formed expressions. Similarly, if the constant symbol 4 is replaced by
the variable x, if 2 gets replaced by y, and if before the resulting formula

rems. See also Jeremy Avigad’s article on “Proof Theory” in this volume.
7It is an open question which axiomatised fragment of arithmetic exactly Hilbert re-

garded as mathematically and philosophically unproblematic: whether first-order Peano
Arithmetic or the system now called Primitive Recursive Arithmetic or something else.
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y + y = x we put the quantifier expressions ∀x∃y, we end up with yet
another formula of the language of elementary arithmetic: ∀x∃y y+y =
x (for every natural number x there exists a natural number y, such that
y + y = x). According to our intended interpretation of arithmetical
signs, this formula says that every natural number x is an even number,
which is, obviously, false, but again the formula nevertheless belongs to
the language of elementary arithmetic. And again, as far as the formal
system is concerned, this intended interpretation is irrelevant.8

These are the symbols that one can use in order to build up a for-
mula of one particular language—as, e.g., the language of elementary
arithmetic: constant symbols for particular natural numbers (0, 1,
2,. . .), variables for numbers (x, y,. . .), arithmetical function signs (+,
×), arithmetical relation symbols (=, <), and logical symbols. If one
wanted to speak about natural numbers in terms of a more expressive
language, then one could always add further symbols. For instance,
while we will only deal with first-order languages of arithmetic below,
in which ∀ and ∃ quantify solely over natural numbers, we could have
turned to second-order languages of arithmetic in which ∀ and ∃ may
also be used to quantify over sets of natural numbers, and so on. In any
case, one usually assumes that the language of a formal system contains
only countably many formulas, and that a computer is in principle ca-
pable of listing all these formulas once the syntactic rules of the formal
system have been turned into a corresponding computer program.9

2. The set of axioms of S, i.e., a set of formulas of LS . If there are to
be just finitely many axioms, then these axioms may simply be listed
explicitly. Otherwise, if there are to be infinitely many axioms, then
one may state a procedure by which one would be able to determine in
finitely many steps whether a given formula of LS is to be counted as
an axiom or not. In either case, the set of axioms of a formal system

8But whenever one has some interpretation of a formula in the language a formal system
in mind, and the formula is such that it is true or false relative to that interpretation, one
often says ‘statement’ or ‘sentence’ instead of ‘formula’.

9Of course, in the heyday of Hilbert’s Formalism, computers in the modern sense were
not available as yet. In fact, logical investigations that were closely related to formalist
views of mathematics and to the Incompleteness Theorems constituted a significant source
of both inspiration and theoretical support for the emergence of modern computers and
the development of computer science.
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is assumed to be a decidable set, that is, a set of formulas in a formal
language for which a computer program could be written, such that the
program would output ‘yes’ if it received as an input a formula that
is a member of the set of axioms, but which would otherwise output
‘no’.10

In standard formal systems one finds two types of axioms: logical
axioms and eigenaxioms. The former express general logical laws,
whereas the latter determine the particular (in our case, mathemati-
cal) content of the formal system or theory S. For instance, the formal
system of elementary arithmetic contains both logical axioms and arith-
metical axioms: ∀x x = x is among the former, whereas ∀x x + 0 = x
is among the latter.

3. The set of logical rules (rules of inference) of S which is specified again
by listing the rules explicitly or by stating a procedure by which one is
able to determine within finitely many steps what counts as a rule of
the system. Each rule is of the form

A1

A2
...

An

B

where A1, A2, . . . , An are called the premises of the rule and B is called
its conclusion (the line indicates the transition from the premises to
the conclusion). In typical formal systems, the rules are required to
be logically valid, i.e., strictly truth-preserving. For example, Modus
Ponens,

A
A→ B
B

10According to the traditional view on axioms which we inherited from the ancient
Greek, only such sentences were to be chosen as axioms which one could see to be true
by mere inspection, that is, which were not in need of proof. However, according to the
modern terminology, ‘axiom’ does not have any such epistemic connotation anymore at
all.
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is typically chosen to be among the rules of a formal system.11

4. The set of theorems of S which is determined by the specifications of
the language, the axioms, and the rules of S: a formula A of LS is
defined to be a theorem of S if and only if A is derivable from the
axioms of S by means of applications of the logical rules of S. In other
words: there is a formal derivation (formal proof) that starts from the
axioms of S and which then “leads” to A by means of finitely many
applications of rules of S. Accordingly, we say that A is disproven in S
if and only if ¬A is derivable in S. These rather vague definitions may
actually be turned into exact and purely mathematical definitions. In
particular, there are no “practicality” conditions built into the concept
of formal derivability : for instance, even if the shortest derivation of a
formula in a formal system takes more steps than there are particles in
our physical universe, the formula still counts as derivable in the formal
system.

On the one hand, such formal systems may be regarded as potential answers
to the question: What is your theory? Famously, Euclid was the first to
suggest that scientific disciplines—in his case: Euclidean geometry—should
be built up deductively by axioms and rules (but of course his axiomatisation
of geometry was not quite a formal system in our modern sense yet). Later,
Newton gave a “Euclid-style” axiomatisation of mechanics. In the 19th and
20th century, various mathematical disciplines were reconstructed success-
fully in terms of more or less precisely defined formal systems: geometry
(David Hilbert), arithmetic (Richard Dedekind, Giuseppe Peano), set theory
(Ernst Zermelo, Abraham Fraenkel, Albert Thoralf Skolem), and so forth.
Further down below, we will deal mainly with formal systems of first-order
arithmetic.

On the other hand, a formal system may be viewed as determining a
computer with a particular kind of computer program (or, more formally
speaking, a so-called Turing machine): For the theorems of a formal system
can be enumerated by a computer program as follows. Let a procedure gen-
erate systematically all finite sequences of formulas in the language of that
formal system, which is easy to implement. By the definition of a formal sys-
tem, for each formula in any such sequence it can be determined in finitely

11In systems of so-called natural deduction, logical rules are permitted to have a much
more complicated form than the one presented here. But we concentrate only on rules in
the sense of Hilbert.
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many steps whether the formula is an axiom of the system or whether it is the
result of applying the rules of the system to some of the formulas that occur
earlier in that sequence; if either of these two properties apply to all members
of a sequence, which again can be determined in finitely many steps, then let
the computer output the last formula in that sequence, for in that case the
sequence is a derivation of the last formula of the sequence by the axioms
and rules of the formal system; otherwise move on to the next sequence. In
this way it is easy to see that for every formal system there exists a computer
with a particular computer program, such that all and only the theorems of
the formal system are enumerated by the computer with that program. It is
also possible to reverse this procedure: for every computer with a computer
program that enumerates only formulas in a particular formal language, one
can show that a formal system exists with precisely that language whose
theorems are exactly the formulas enumerated by that program. (This was
proven by William Craig in the 1950s.) So there is in fact a tight correspon-
dence between formal systems and computers with programs of a particular
kind.

It was clear to Hilbert that in order for the formal systems that one in-
tended to use in mathematical areas outside of arithmetic not to interfere
with the “real mathematics” of natural numbers, it was necessary for them
to be consistent. Indeed, it should not even be possible to derive a formula
in any such system that would contradict a formula for which there was an
elementary arithmetical proof. For otherwise the sum of that formal sys-
tem with elementary arithmetic would be inconsistent again, which would
mean that the formal system would be in conflict with the part of math-
ematics that for Hilbert was sacrosanct. For the same reason, the formal
system could not be joined with arithmetic then for the purpose of deriving
arithmetical statements in non-arithmetical ways, since one can show that in
any inconsistent formal system that includes the standard axioms and rules
of logic, the derivation of arithmetical formulas and indeed of all formulas
whatsoever gets all too simple— for every formula whatsoever can be derived.
Ideally, therefore, one would prove the consistency of the formal systems that
one intended to employ in mathematics. And in order for these proofs to be
beyond doubt again, it would be necessary to prove the consistency of these
formal systems just by the means of elementary arithmetic. Thus, the con-
sistency statements in question had to be translated into statements about
natural numbers first, after which one could have hopes to prove them in
the same ways as we prove theorems in arithmetic. This research project
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became known as Hilbert’s program (see Zach’s (2003) entry in the Stanford
Encyclopedia of Philosophy). It is this program in the foundations and the
philosophy of mathematics that got seriously undermined by the two most fa-
mous theorems of mathematical logic: the Incompleteness Theorems proven
by the Austrian mathematician Kurt Gödel (1906–1978) in 1931.12

In the next four sections it will be explained very briefly what these
theorems say. This is not meant as a substitute for a thorough mathematical
treatment of the Incompleteness Theorems. Ideally, having read the present
article, you will become so interested in the topic that you will turn to a
detailed formal exposition of the theorems.

4 The First Incompleteness Theorem

Theorem 1 (First Incompleteness Theorem) Any consistent formal sys-
tem S which includes a sufficient amount of arithmetic is incomplete with
regard to statements of the language of elementary arithmetic, i.e., there are
such statements that can neither be proven nor disproven in S.

(Strictly speaking this is not exactly Gödel’s own version of the theorem but
rather Barkley Rosser’s later slight modification of it, but never mind.)

What do we mean by ‘sufficient amount of arithmetic’ and ‘incomplete
with regard to statements in the language of elementary arithmetic’ here?
Let us deal with them one after the other.

• “Sufficient” amount of arithmetic: A formal system S contains a “suffi-
cient” amount of elementary arithmetic, in the sense of the First Incomplete-
ness Theorem, if and only if:

1. The language LS of the formal system S either includes the language
of elementary arithmetic itself or the function symbols and relation
symbols of elementary arithmetic are definable in the language LS . For
example, while the standard language of set theory does not include
the + sign for natural numbers, it is possible to define + and, for
that matter, also the natural numbers themselves, just by means of

12While most philosophers of mathematics regard Hilbert’s program as dead, in light of
the Incompleteness Theorems, this does not mean that Formalism about mathematics is
dead. Even more importantly, proof theory, that is, the part of mathematical logic that
emerged from the failure of Hilbert’s original program, is still an important area of logic.

10



set-theoretic vocabulary. Indeed, for every formula in the language of
elementary arithmetic there is a “translation” of that formula into the
standard language of set theory.

2. The axioms and rules of a formal system of arithmetic of a particular
kind—which we will simply term ‘elementary arithmetic’ again—are
either derivable in S themselves or they are derivable in S if the latter
is extended by the definitions to which we referred in 1. We won’t
state the exact axioms and rules for elementary arithmetic here: The
logical axioms and rules are just the ones of classical first-order logic.
The arithmetical ones can be found in, for instance, appendix A.2 of
Franzen (2005). Let me just stress that elementary arithmetic in this
sense is very elementary: it contains much less arithmetic than what
is presupposed by any mathematics course at a university.

• Incomplete with regard to statements in the language of elementary arith-
metic: Let S be a formal system, such that LS includes the language of ele-
mentary arithmetic either directly or by the help of definitions (as explained
before): S is then defined to be incomplete with regard to statements in the
language of elementary arithmetic if and only if there is a formula A of the
language of elementary arithmetic such that neither A nor ¬A is a theorem
of S.

At this point, the amazing power of the First Incompleteness Theorem
should become clear enough: Take any formal system S you like—any theory
which one determines much in the way in which scientists determine their
theories systematically by stating axioms. As long as S does not contain
any formula A and its negation ¬A simultaneously, and as long S includes
a sufficient amount of elementary arithmetic, S is incomplete with regard
to statements of elementary arithmetic, that is, there are such statements
that can neither be proven nor disproven in S. For example, take standard
axiomatic set theory, which is an enormously strong formal system, in fact
so strong that virtually all of the mathematical theorems that got proven by
mathematicians so far can be derived in it: If it is consistent (which we believe
to be the case), then since it contains a sufficient amount of arithmetic (and
much more), it must be incomplete; there is a statement A in the language
of elementary arithmetic, such that neither A nor ¬A is derivable in it. Since
neither A nor ¬A is derivable in the theory, the result of adding, e.g., A to
the theory is a strict consistent extension again. Still this extension will be
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incomplete, by yet another application of the First Incompleteness Theorem:
There is then a different sentence A′ such that the extended theory proves
neither A′ nor ¬A′. And so forth.

Sometimes one can find the First Incompleteness Theorem stated in a
version that employs a truth predicate (‘is true’): For every consistent formal
system S which includes a sufficient amount of arithmetic there is a true
statement A in the language of elementary arithmetic, such that A is not
derivable in S. This is because among the statements A and ¬A that any of
the formal systems in question fails to derive according to the First Incom-
pleteness Theorem, there must at least be one true sentence, since by the
metalinguistic version of the law of the excluded middle, for every sentence
A in the language of elementary arithmetic, either A is true or ¬A is true.

There is nothing wrong whatsoever about this semantic reformulation
of the purely syntactic First Incompleteness Theorem, as long as one has
the right kind of understanding of ‘true’. A precise theory of truth that
supplies this understanding was introduced and developed by Alfred Tarski
in the 1930s (see Tarski 1936). Indeed, even a weak, so-called “deflationary”
theory of truth, together with classical logic, is sufficient to conclude the
semantic variant of the First Incompleteness Theorem from Gödel’s actual
theorem. But note that the question of whether a formula A of the language
of a formal system is true or false only makes sense if a certain interpretation
of that language is presupposed—without assigning some sort of meaning to
A it is simply not determined whether A is true or not. This interpretation
or meaning-assignment is usually regarded as unproblematic at least in the
case of the formulas of the language of elementary arithmetic.

How did Gödel manage to prove the First Incompleteness Theorem?
Without going into any details, and without giving the proof itself, we would
at least like to convey the two essential ideas that Gödel put together in
order to give the proof: the arithmetisation of syntax on the one hand, and
self-referentiality on the other.

5 The Arithmetisation of Syntax

If a formal system S contains the language of arithmetic and does not have
any false arithmetical statements among its theorems, then obviously (parts
of) the system can be interpreted as referring to natural numbers and as
stating some of the mathematical properties of these numbers. However, if
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natural numbers are at the same time regarded as codes for syntactic ex-
pressions such as terms, formulas, and derivations, then the arithmetic sen-
tences of S can also be interpreted as referring indirectly to these syntactic
expressions—by referring to the codes of these expressions—and stating indi-
rectly some of the syntactic properties of these expressions—by stating them
in terms of mathematical properties of their natural number codes. This is
the ingenious thought behind Gödel’s arithmetisation of syntax.

Here is one way in which this arithmetisation can be achieved13:

1. The coding mapping (Gödel coding or Gödelisation):

Let us exemplify the idea in terms of a simple informal example. Con-
sider the English alphabet:

a, b, c, . . .

(We will suppress quotation marks where we can, but strictly speaking
the English alphabet includes ‘a’, ‘b’, ‘c’, . . ., rather than a, b, c, . . .).

Now we can construct a coding function that maps finite sequences of
English letters to natural numbers. For example:

• Assign 1 to a, 2 to b, 3 to c, 4 to d, and so forth.

• Let p1 be the first prime number (2), p2 the second prime number
(3), p3 the third prime number (5), and so on.

• Now assume that we are given a sequence of English letters; as
one says in this context, one is given a “word” or string, where it
does not matter whether such a “word” or string is meaningful or
not. But just for the fun of it, let us choose a sequence of letters
that does have a meaning: bad.

We can then encode this word by means of a number as follows:

(a) Take p1 to the power of the number that was assigned to the
first letter in the word. In our case: p2

1 = 22.

(b) Take p2 to the power of the number that was assigned to the
second letter in the word. In our case: p1

2 = 31.

13There are more efficient coding procedures than the one described here, but again
never mind.
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(c) Take p3 to the power of the number that was assigned to the
third letter in the word. In our case: p4

3 = 54.
(Since our word consists of three letters, we are done.)

• Finally, multiply the results of these calculations. In our case:
22 · 31 · 54 = 4 · 3 · 625 = 7500.

• So 7500 is the Gödel code of our given word bad.

This encoding has two remarkable properties: First of all, the coding
function is computable, that is, a computer could be programmed to de-
termine the code of any given input string in finitely many computation
steps. Secondly, it’s a proper encoding, in the sense that it is possible
to reconstruct from every code number the unique original word that
it encodes—in other words, decoding works properly:

• Let a Gödel code n be given. In the example: 7500.
We want to reconstruct which word is encoded by it.

• Determine the prime factorization of n. In our case: 22 · 31 · 54.
(According to the Fundamental Theorem of Arithmetic, this fac-
torisation is determined uniquely, up to the ordering of factors.)

• Now we proceed as follows:

(a) Consider the power of the first prime factor and take its cor-
responding English letter. In our case: b.

(b) Consider the power of the second prime factor and take its
corresponding English letter. In our case: a.

(c) Consider the power of the third prime factor and take its
corresponding English letter. In our case: d.
(Since here our n has only three prime factors, we are done.)

• Finally, write down the resulting letters consecutively.
In our case: bad

• So bad is the word that is encoded by 7500.

In the case of the Incompleteness Theorems, Gödel introduced such a
coding function for the expressions of the language LS of any system S
that is referred to by the theorems. Since derivations from the axioms
of S by means of the rules of S are also nothing else but (perhaps
long) strings of symbols, they can be encoded by numbers in this way,
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too. The existence of a “mechanical” coding function such as the one
sketched above is itself a mathematical fact. So there is nothing “non-
mathematical” about Gödel’s theorems or proofs. Gödel simply uses
the mathematical fact that such a coding exists in his mathematical
proof of the Incompleteness Theorems.

2. Gödel was able to prove that (i) all the standard syntactic proper-
ties, relations, and operations that are to do with terms, formulas, and
derivations, correspond to more or less “nice” arithmetical properties,
relations, and operations of their corresponding Gödel codes, and that
(ii) all of the latter “nice” arithmetical properties, relations, and oper-
ations can be represented in elementary arithmetic (the formal system
that we dealt with in the last section). But what does it mean to say
that an arithmetical property, relation or operations is representable in
a formal system? This can be made more precise as follows (we will
only do this for properties and relations): a property or relation R of
natural numbers, where R has k arguments, is representable in a formal
system S the language of which includes the language of elementary
arithmetic if and only if there is a formula A[x1, . . . , xk] of LS with k
variables, such that for all natural numbers n1, . . . , nk:

(a) if R(n1, . . . , nk), then S proves A(n1, . . . , nk),

(b) if not R(n1, . . . , nr), then S proves ¬A(n1, . . . , nk).

We also say that such a case that the formula A represents R in S.

This is still not perfectly precise. Within R(n1, . . . , nk) on the left-hand
side, for instance, n1 is meant to stand for a natural number, while in
A(n1, . . . , nk) on the right-hand side n1 is meant to stand for a symbol
for a natural number. This could be made explicit by replacing n1 on
the right-hand side by, say, n1, but as long as one is clear about what
is meant here, let’s not be too pedantic.

What Gödel proved was that by means of coding, all the usual syn-
tactic properties, relations, and operations for formal expressions are
representable in elementary arithmetic and therefore also in every for-
mal system that includes elementary arithmetic as a subsystem. In
particular, the syntactic relation

• PrS(x, y): the sequence with Gödel code x is a derivation in the
formal system S of the sentence with Gödel code y
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is representable in all systems that extend elementary arithmetic. Once
the relation PrS is represented in this way in terms of an arithmetical
formula, it is easy to define provability in S, that is,

• ProvS(y): the sentence with Gödel code y is provable in S

on the basis of it. Simply take ProvS(y) to be: ∃xPrS(x, y).

Given this representation of provability in S in terms of an arithmetical
formula, one can ask which properties of the concept provability in S can be
proven in S. It turned out that in standard formal systems of arithmetic,
such as the well-known system of so-called Peano arithmetic which is a proper
extension of the system of elementary arithmetic in the last section, various
important such properties can be proven to hold of provability in S. In fact,
this will be exactly what the phrase ‘certain amount of arithmetic’ in our
formulation of the Second Incompleteness Theorem is meant to say, namely
that a few essential properties of formal provability can be proven to hold
(see below). But before we turn to the Second Incompleteness Theorem, we
still need to supply the second of Gödel’s ideas that were crucial to his proof
of the First Incompleteness Theorem.

6 Self-Referentiality

In Gödel’s original proof of the First Incompleteness Theorem, the existence
of a “self-referential” sentence plays an important role, where a self-referential
sentence is simply one that speaks about itself (via coding) or about a sen-
tence that is provably equivalent to itself.

As Gödel showed, there is a sentence G of the language of elementary
arithmetic, such that if S satisfies the assumptions mentioned in the First
Incompleteness Theorem, then S proves the equivalence formula

G↔ ¬ProvS(pGq)

where, generally, if B is a formula in LS , pBq is an arithmetical term that
denotes the Gödel code of B (and where a computer could be programmed
to determine that term given B as input).

In this sense, up to provable equivalence, G says about itself via reference
to its own code:
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I am not provable in S.

Gödel derives the existence of G from a general fixed-point lemma (also called
diagonalization lemma), which says that for every formula A[x] in LS with
one free variable x14, there exists a sentence in LS again that says about
itself (or about a sentence that is provably equivalent to itself) that it has
the property that is expressed by A[x]. The proof of this lemma is actually
constructive, that is, Gödel constructs the fixed-point formula in question by
a concrete procedure that could be run on a computer given the input A[x].
If A[x] is chosen to be ¬ProvS(x), then this yields the existence of G above.

The sentence G is reminiscent of the famous “Liar” sentence which says

I am not true.

and which seems to lead to a contradiction by means of the following bit
of informal reasoning: Assume the Liar sentence is true; then what it says
must be the case; but what it says is that it is not true. So we have: If
the Liar sentence is true, then it is not true. Now assume the Liar sentence
is not true: but that is exactly what it says; so it must be true after all.
So we also have: If the Liar sentence is not true, then it is true. Summing
up, this yields: the Liar sentence is true if and only if it is not true. But
that is a logical contradiction in classical logic. There is now a whole area
in philosophical logic called ‘formal theories of truth’, which deals with the
Liar paradox and with ways of avoiding its contradictory consequences. In
spite of the similarity between the Liar sentence and Gödel’s sentence G
above, it is important to realize that the two are very different still: First of
all, while the Liar sentence includes a truth predicate, which is a semantic
predicate, Gödel’s sentence G includes a provability predicate for some formal
system, where provability in that system is not a semantic but a syntactic
notion, or, via coding: an arithmetical notion. Indeed, G is but a sentence
in the language LS that says something about natural numbers and their
arithmetical properties or relationships or operations, even when we know
that qua coding G says something about its own unprovability. Secondly,
while the Liar seems to commit us to the proof of a contradiction, Gödel’s
sentence G does not: for instance, take S to be elementary arithmetic itself;
then if S is consistent, which no one doubts, S neither derives G nor ¬G.
Since, in particular, G is not derivable in S, G is actually a true statement.

14Free means: not in the range of a quantifier expression ∃x or ∀x.
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But no contradiction follows from that: it just means that S misses out on
one particular truth, that is, G.

We turn now to the second of Gödel’s Incompleteness Theorems.

7 The Second Incompleteness Theorem

Theorem 2 (Second Incompleteness Theorem) For any consistent for-
mal system S that includes a sufficient amount of arithmetic, the consistency
of S is not provable in S itself.

We are already familiar with some of the “ingredients” of this theorem.
Mainly we will have to deal with the notion certain sufficient amount of
arithmetic again—which amounts to something different here from what it
meant in the case of the First Incompleteness Theorem—and the notion of
unprovability of the consistency of S in S itself :

• Sufficient amount of arithmetic: S includes a sufficient amount of arith-
metic in the sense of the Second Incompleteness Theorem if (i) it includes
a sufficient amount of elementary arithmetic in the sense of the First In-
completeness Theorem, that is, it includes a formal system of arithmetic of
a particular kind as a subsystem, and additionally (ii) S and ProvS taken
together satisfy the following conditions which are called the provability con-
ditions (or Hilbert-Bernays-Löb conditions)15:

1. S proves: ProvS(pA→ Bq)→ (ProvS(pAq)→ ProvS(pBq)).

2. S proves: ProvS(pAq)→ ProvS(pProvS(pAq)q).

3. If S proves A, then S proves ProvS(pAq).

where pAq and pBq are symbols again for the Gödel codes of whatever sen-
tences of LS that replace the letters A and B, respectively.

15This is a non-trivial requirement: one can actually define ProvS(y) in a way such
that according to the standard interpretation of the arithmetical signs the set of formulas
whose codes have the very property that is expressed by ProvS(y) is precisely the set of
formulas derivable in S, but still elementary arithmetic is not able to derive the provability
conditions for ProvS(y) defined in such way. However, given Gödel’s own definition of
ProvS(y), the provability conditions are indeed satisfied for ProvS(y) and all suffiently
strong formal systems of arithmetic (including the system of first-order Peano arithmetic).
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In modern philosophical logic, statements of a similar form as these fig-
ure prominently in modal logic, however there ‘ProvS ’ usually gets replaced
by some sentential operator �—which might stand for necessity or knowa-
bility or for something else—and instead of the symbols for the codes of
formulas it is the formulas themselves that get stated (see Yde Venema’s
article on “Modal Logic and (Co-)Algebra” in this volume). For instance,
�(A → B) → (�A → �B), �A → ��A, and if ` A then ` �A, are
normally all counted as valid principles of the logic of metaphysical neces-
sity. This means: the set of necessary propositions is closed under Modus
Ponens, if a proposition is necessary then it is necessary that this is so, and
everything that is provable from the logical principles for necessity is itself
necessary. There is a whole subarea of modal logic that deals with the study
of provability in formal systems such as first-order Peano arithmetic just by
means of the syntactical and logical resources of modal logic and of its famous
possible-worlds semantics (which was developed by Saul Kripke in the 1950s
and 1960s). In this way, Hilbert’s metamathematics—mathematics about
mathematics—can be given a modal formalisation.16

Finally, we can now also say more exactly what the ‘unprovability of the
consistency of S in S itself’ means:

• The consistency of S is not provable in S itself : Given our previous defi-
nition of ProvS , and given that S contains elementary arithmetic as a sub-
system, it is not hard to see that the consistency of S can be expressed in
terms of an arithmetical formula, for example, by means of:

¬ProvS(p0 = 1q).

Let us abbreviate this last formula by ConS . So ‘the consistency of S is not
provable in S itself’ simply means: The formula ConS is not provable in S.

The proof of the Second Incompleteness Theorem consists mainly of a
formalisation of the proof of Gödel’s original version of the First Incomplete-
ness Theorem within the formal language of S itself, which becomes possible
on the basis of the provability conditions.

Just as in the case of the First Incompleteness Theorem, containing a
sufficient amount of arithmetic up to translation by means of definitions is

16For a standard reference on modal provability logic, see Boolos (1993).

19



actually enough to get the Second Incompleteness Theorem going. For in-
stance, the Second Incompleteness Theorem implies that if standard set the-
ory is consistent, then since it contains elementary arithmetic, and since it
satisfies the provability conditions given Gödel’s own definition of ProvS(y),
it is not able to derive its own consistency even though we all believe it is
true that standard set theory is consistent and even though the consistency of
standard set theory can be expressed in purely mathematical terms by Gödel’s
coding methods. If not even set theory is able to derive its own consistency
(assuming it is consistent), then of course no weak system of arithmetic will
be able to derive the consistency of set theory either. Hence, the formal
system of standard set theory is an important part of (formalised) mathe-
matics that is beyond the reach of Hilbert’s program which aimed to prove
the consistency of such formal systems by elementary arithmetical means. In
this sense, Hilbert’s program has failed, and it was proven to be a failure by
a logical theorem.

8 What Does This Show About Provability?

One of the very recent trends in the philosophy of mathematics is an emphasis
on mathematical practice, that is, on what single mathematicians—and the
mathematical community as a whole—actually produce and do, and by what
methods and principles they operate. This trend is usually regarded to be
opposed to, or at least critical of, the application of logical methods in the
philosophy of mathematics, since these are regarded as too abstract and too
far removed from the concepts that one actually needs in order to study the
activities of “real” mathematicians. As we have found, the Incompleteness
Theorems deal with derivability in particular formal systems. But, at least at
first glance, when “real” mathematicians prove theorems, they do not seem
to put forward any formal systems in which they carry out these proofs:
They do not specify any formal language by syntactic rules, they do not fix
any particular set of statements as “the” set of mathematical axioms, they
usually do not refer to derivation rules at all, and when they check whether a
sequence of statements is a correct proof, the core of what they are doing does
not seem to involve syntactic procedures. In a nutshell: what mathematicians
mean when they speak of proof and provability, and what they do when they
actually decide whether something is a proof, seems to differ substantially
from what we called derivation and derivability in a formal system. “Real”
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provability does not seem to be relativized to any formal system but is rather
absolute and informal (as was emphasized by Gödel himself, and later again
by John Myhill in his “Some Remarks on the Notion of Proof”—see Myhill
1960).17 So how exactly does absolute/informal proof and provability relate
to proof and provability in formal systems?

Surprisingly, some information about this can be derived from the In-
completeness Theorems again. On their basis, it turns out to be possible
to prove significant statements even about computability, the human mind,
and the in-principle proving capabilities of human mathematicians. Indeed,
this is a point at which artificial intelligence and cognitive science meet logic
and the philosophy of mathematics. And logical methods are found to throw
some light even on provability in the sense of mathematical practice (or at
least on something close to that).18

Let

• T be the set of true arithmetical statements,

• K be the set of humanly knowable arithmetical statements,

• Se be the set of all arithmetical statements enumerated by the computer
(Turing machine) e according to the program of that computer,

• K ′ be the set of humanly knowable statements.

The exact definition of ‘arithmetical statement’ is not so important, but ‘sen-
tence in the language of elementary arithmetic’ in the sense of the first section
is a possible option. With respect to the enumeration of arithmetical state-
ments by a computer, think of computer programs which in discrete steps
determine an arithmetical statement and which then print it on a screen.
It is not presupposed that any such program terminates after finitely many
steps—e might well be a computer and a program which print arithmetical
statements indefinitely.

Here are two arguments for theses that are philosophically important,
where each of the arguments relies on one of the Incompleteness Theorems:

17Leitgeb (2009) discusses the differences between formal provability on the one hand,
and informal or absolute provability by mathematicians on the other, in logical and philo-
sophical detail.

18In the following, we follow Stewart Shapiro’s treatment of the topic in his “Incom-
pleteness, Mechanism, and Optimism” (Shapiro 1998) to a large extent.
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1. Argument:

• Assume the so-called Mechanistic Thesis, that is: There is a Tur-
ing machine e, such that K = Se.

• But that means K is enumerable by a Turing machine.

• However, by the First Incompleteness Theorem, the set T is not
enumerable by a Turing machine, since if it were so then T would
coincide with the set of theorems of the formal system that corre-
sponded to that Turing machine, which is excluded by the seman-
tic (truth-theoretic) variant of the First Incompleteness Theorem.

• So it follows that K 6= T .

• Summing up, this argument shows that the following thesis is
entailed by the First Incompleteness Theorem:

Thesis 1: Mechanistic Thesis → K 6= T

In words: If the set of humanly knowable arithmetical statements
can be enumerated by a Turing machine, then there are true arith-
metical statements which are not humanly knowable.

2. Argument:

• Assume the Mechanistic Thesis again, that is: There is a Turing
machine e, such that K = Se.

• Assume that the Hilbert-Bernays-Löb provability conditions hold
for Se and a particular provability predicate.

• Assume for contradiction that the statement ‘K = Se’ is a member
of K ′:

• Since, trivially, ‘K ⊆ T ’ is a member of K ′ (because we know
from epistemology that knowledge implies truth), it follows that
‘Se ⊆ T ’ is a member of K ′, too (by our equality assumption from
above together with standard assumptions on the closure of K ′

under logical derivations).

• Hence, it also follows that ‘Se is consistent’ is a member of K ′

(because we know that every set of true statements must be con-
sistent, where the consistency statement is formulated by means
of the provability predicate referred to before).
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• But ‘Se is consistent’ is an arithmetical statement (as being given
by the arithmetization of syntax). Thus, ‘Se is consistent’ is even
a member of K.

• But this contradicts the Second Incompleteness Theorem: since
K certainly contains “sufficient” arithmetic, Se does so, too; Se

would furthermore be enumerable by a Turing machine and would
therefore coincide with the set of theorems of a formal system;
by assumption, the provability conditions are satisfied; finally, by
what we have just seen, Se would include a statement that in
a straightforward way expresses that Se is consistent; but that
is exactly the type of situation that is excluded by the Second
Incompleteness Theorem. Contradiction.

• So by reductio we have shown: ‘K = Se’ is not a member of K ′.

• Summing up, this argument proves that the following thesis is
entailed by the Second Incompleteness Theorem:

Thesis 2: Mechanistic Thesis (and provability conditions) →
‘K = Se’ is not a member of K ′.

In words: If the set of humanly knowable arithmetical statements
can be enumerated by a Turing machine (and the provability con-
ditions hold for that set and for an arithmetical formula that deter-
mines that set), then it is not humanly knowable by which Turing
machine the set of humanly knowable arithmetical statements can
be enumerated.

It should be clear that the two arguments from above are not fully formalised
themselves. In particular, all informally stated claims that involve quotation
marks and/or the membership sign should be made precise. But this can be
done: see Carlson (2000) for a much more precise and sophisticated treat-
ment.

Both thesis 1 and thesis 2 are material implications. By classical proposi-
tional logic, they can be reformulated in terms of the following disjunctions:

The Mechanistic Thesis is false or K 6= T .

and

The Mechanistic Thesis is false (or the provability conditions are false) or
‘K = Se’ is not a member of K ′.
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The former thesis says: Either what we can know in principle about arith-
metic surpasses the powers of any Turning machine, or there are arithmetical
statements A and ¬A for which we are for principled reasons unable to de-
cide whether A is true or ¬A is true. This is Kurt Gödel’s famous dichotomy
which he himself derived from his Incompleteness Theorems in his Gödel
(1995).19 The other thesis amounts to, if we ignore the part on the provabil-
ity conditions (which one would need to make much more precise anyway):
Either what we can know in principle about arithmetic surpasses the powers
of any Turning machine, or for principled reasons we cannot know which
Turing machine enumerates all and only those arithmetical truths that we
can know to be true.

Is it perhaps possible to do better than these theses? That is: Is it
possible to argue on the basis of the Incompleteness Theorems in favour of
one of the disjuncts rather than “merely” in favour of the disjunctions from
above? John Lucas (1961) and Roger Penrose (1989) thought so, when they
tried to argue in such a manner just for the falsity of the Mechanistic Thesis,
but careful philosophical and logical analysis of their arguments (which is
still ongoing) indicates that none of their arguments is sound.

Lots of questions remain open. For instance: Does absolute/informal
provability satisfy the same provability conditions as formal provability did
in section 2, or are the “modal laws” of absolute/informal provability funda-
mentally different?20 Is it possible to give a logical-philosophical explication
of ‘proof’ and ‘provability’ in the absolute/informal sense rather than the
formal sense? Is it at least possible to state a true and informative axiomatic
system in which ‘x is a proof’ figures as a primitive term, much as ‘x is
known’ is taken as a primitive expression in recent epistemological theories
of knowledge (see Williamson 2000 and Vincent Hendricks’ article on “Logic
and Epistemology” in this volume)?21 Finally: Are there true mathemati-
cal statements which are even absolutely/informally unprovable? While the

19Solomon Feferman gives an excellent presentation of this dichotomy in Feferman
(2006).

20For instance, Prov(pAq) → A or �A → A seems to be obviously logically valid for
informal or absolute provability, whereas by a theorem by Löb only trivial instances of
this scheme can be derived for formal provability in formal systems such as the ones that
the Second Incompleteness Theorem deals with.

21By the way: if Williamson (2000) is right, then knowability does not satisfy all of
the Hilbert-Bernays-Löb provability conditions, since the modal 4 or transitivity principle
�A→ ��A, which is known to epistemologists as the KK principle, fails for knowability.
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Incompleteness Theorems do not answer these questions just by themselves,
even attempting to answer them without taking into account the Incomplete-
ness Theorems will remain to be a futile endeavour.22
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