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READ ME:

These notes are still drafts:

• there will be typos;
• there may be errors; and
• I plan to augment them.

That said, they should be complete enough to be
useful and I hope you find them so.

I plan to update this document on my website:

https://sites.google.com/site/tobymeadows/.

Unless you’ve already come from there, it could be
worth looking there for a more recent version of
this document.

Also, if you do spot any problems or there’s
something you don’t like or understand, I’d like to
hear about it. Please drop me an email at:

toby.meadows@gmail.com.

https://sites.google.com/site/tobymeadows/
mailto:toby.meadows@gmail.com
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CHAPTER 1

om liar sentences to Kripke’s construction

This week, we’re going to build up some of the technical basics involved in
understanding the liar paradox and some of the contemporary approaches
to it on the market. We’ll run through the following sections:

(1) The liar paradox - we’ll develop the basic ingredients of the paradox,
investigate some problematic solutions and in so doing make things
more precise.

(2) Getting formal - we’ll formulate the liar paradox in a more precise
manner, which will make the problem more pressing.

(3) What do we do? - we’ll characterise solutions into three broad classes:
revising the rules of truth; revising language; and revising logic.

(4) Tarksi’s solution - we outline Tarksi’s levelled approach to the para-
dox.

5
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1.1. THE LIAR PARADOX 6

1.1. The Liar Paradox

1.1.1. An informal version of the liar paradox. Consider the following
sentence:

This sentence is not true.

Suppose it is true. Then it says that it is not true, so it must not be true.
But this contradicts our assumption. So it cannot be true after all. But then
this means that it is not true that the sentence is not true; i.e., it is true.
This is a contradiction: we have shown that it is both true and not true.

So our first question is:

Why would this be a problem?

The standard answer to this is that that we have argued to an inconsistency.
Thus, we have two choices, either:

(1) we accept the inconsistency and go on with our lives; or
(2) we take the inconsistency as indicating that something is wrong in

our understanding of the liar sentence.

Now if we go with (1) and assume that our ordinary reasoning is, roughly,
like classical logic - a controversial assumption - then the fact that we hold
inconsistent beliefs would give us reason to believe anything at all. This is
known as trivality.

Let’s give a quick demonstration of this. First recall the definition of conse-
quence.

DEFINITION 1. Let Γ∪{ϕ} ⊆ SentL. Then ϕ is a consequence of Γ, abbreviated
Γ |= ϕ if for every modelM of L, it is the case that

ifM |= γ for all γ ∈ Γ, thenM |= ϕ.

REMARK 2. The definition is also often given such that Γ |= ϕ if every seman-
tic evaluation function v for L is such that:

if v(γ) = 1 for all γ ∈ Γ, then v(ϕ) = 1.

For example, Priest [2008] tends to use this notation. There is no significant
different here. ModelsM and semantic evaluation functions v are really just
the same thing. For anyM there is a v such that for all ϕ ∈ SentL

M |= ϕ ⇔ v(ϕ) = 1
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1.1. THE LIAR PARADOX 7

and vice versa. However, in non-classical contexts with more than two truth
values, it is less convenient to use theM notation.

It is also worth noting that the |= symbol has two different meanings here.
One for consequence and one for truth in a model. This is known as over-
loading, but it doesn’t cause problems since the truth in a model relation
requires that model M be on the right hand side of the |=, while the conse-
quence relation may use a set of sentences Γ in that place.

Using this it is easy to show how triviality arises.

THEOREM 3. ψ,¬ψ |= ϕ for arbitrary ϕ, ψ ∈ SentL.

PROOF. LetM be an arbitrary model of L. Then it is not the case that:

• M |= ψ; and
• M |= ¬ψ.

Thus letting Γ = {ψ,¬ψ}, we have

ifM |= γ for all γ ∈ Γ, thenM |= ϕ

since the conditional is vacuously satisifed. Moreover, since M was arbi-
trary, we have shown that Γ |= ϕ as required. �

It’s probably worth noting that the proof of Theorem 3 has a sneaky feel
about it. We get validity because there is no model M in which the an-
tecedent of the key condition is true; it has nothing to do with the conclu-
sion at all. While this is just how the classical “if ..., then ...” works, this
has been a source of concern to logicians in the relevant logic tradition.

The upshot of this is that if we have already concluded that ψ and ¬ψ are
true, then we are warranted in concluding that ϕ is true for any ϕ whatso-
ever.1 So if we have concluded that the liar sentence and its negation are
both true, then we should be able to conclude that 2 + 2 = 5 and indeed that

1Strictly, since I’m using quite epistemic language, I should take a detour through the
completenss theorem and note that we have ϕ,¬ϕ ` ψ where ` says that there is a derivation
of ψ from assumptions ϕ and ¬ϕ. This is because a derivation (or proof) has a more plausible
link with giving us warrants to draw conclusions. This point could be important in the case
of second order logic, for example, where no completeness proof is available. However, it’s
probably not too important for our present discussion.
It is also worth noting that I’m assuming transitivity of the consequence relation in my
reasoning above.
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1.1. THE LIAR PARADOX 8

2 + 2 6= 5. Thus if we are connecting our consequence relation to our beliefs,
then we’d be warranted in believing anything. This seems problematic.

For this reason, we usually disregard option (1) and take up (2) accepting
that there is something wrong with our understanding of what is involved in
the liar paradox.2

This suprising conclusion might lead us to the following line of inquiry:

(A) We have a demonstration that triviality ensues if we accept that
the liar sentence is both true and false, so we accept that some-
thing is awry in our understanding of the liar paradox.

(B) But it’s also really clear that I don’t believe or infer just any old
sentence.

(C) So what kind of problem is this?

There are two aspects to a good answer here and we start to tread into more
contentious territory in Philosophy of Logic.

First we might think of this as a descriptive problem. In giving my infor-
mal sketch of the liar paradox, I have something wrong in my description of
what is that we do in the face of the liar sentence. (B) appears to be evidence
for this claim. This buys into thinking of philosophical logic as providing a
description of what we actually do when we reason. The underlying method-
ology is close in spirit to linguistics or parts of cognitive science. It is not
a very popular view. However, Dave Ripley and Paul Egre have done some
interesting work in this area.

On the other hand, we might see this as a normative problem. We wouldn’t
want to say that, presented with the liar sentence, you should use that to
infer anything you like. Thus, our problem is to set out a better way of
dealing with that situation with the eventual goal of telling us what we ought
to do with the liar. This view buys into the idea that logic provides us with
a way of regimenting our reasoning in a uniform manner and in such a way
as to tell us what we should infer in new situations.

I’m not sure that we should see these as alternative views engaged in philo-
sophical debate, so much as different programmes in philosophical logic
with quite different sets of ambitions.

2See Azzouni [2007], Azzouni, Eklund [2002], Patterson [2006] for recent trends which
appear to accept (1) in some fashion.
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1.1. THE LIAR PARADOX 9

1.1.2. Possible causes of our problem. Accepting that something is
awry, brings us to the question of what. In this section, we’ll look at a
few options:

(1) Can we do without the truth predicate?
(2) Is self reference problematic?
(3) Are inferences based on what a sentence say or means problematic?

We’ll make a few remarks about them here, but the following section will
demonstrate that each of them are non-starters.

1.1.2.1. Can we do without the truth predicate? It’s obvious that truth
is playing a starring role here. Perhaps we can do without it. This isn’t a
common response, but let’s make a couple of quick remarks before we move
on.

Really the important point here is that this gives us the opportunity to say
why we want a truth predicate. There could be a very long and contentious
list here, but we’ll satisfy ourselves with just two reasons.

First, the truth predicate allows us to make indefinite generalisations. If I
want to endorse everything Crispin just said, I have a couple of options:

(1) Suppose Crispin just said the sentences ϕ, ψ, and χ. Then I could
say ϕ ∧ ψ ∧ χ; or

(2) I could just say, “All the sentences Crispin just said are true.”

So with a truth predicate I can describe a set of sentences and then say that
they’re all true. In the example above, the truth predicate seems useful, but
hardly necessary. However, we may want to articulate more difficult sets of
sentences. For example, we might want to say.

Everything that will every be said by a philosopher is true.

Since we’re now describing an indefinite collection, it doesn’t seem so ob-
vious that we could take the other option; i.e., there doesn’t seem to be a
collection of sentences that we can just conjoin together.

More pointedly, I might want to say that all of the axioms of ZFC are true.
There are infinitely many axioms of ZFC, so there is no way to articulate
this using a conjunction of sentences.

So the upshot here is that:
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1.1. THE LIAR PARADOX 10

• the truth predicate is useful for providing efficient ways of asserting
large collections of sentences; and
• the truth predicate is required for asserting infinite collections of

sentences.

The second point is that the truth predicate allows us to do semantics. This
is most obvious in the case of Davidson’s truth conditional semantics. Here
we take for granted that we know how the truth predicate works and we use
the truth predicate to break complicated sentences down into the component
conditions required for the complex sentence to be true. In this way an
account of meaning is provided, for which truth is the foundation.

It may then seem that model-theoretic accounts like those of Kaplan [Ka-
plan, 1989, 1978] are off the hook as they don’t make a substantive use of
the truth predicate per se. However, this is a little misleading. While this
style of account does not use a truth predicate, they do make use of satis-
faction relations and intepretation functions (like |= and v described above).
The prototype for these tools is the truth predicate; indeed Tarski’s work
in model theory grew directly out of his work on truth. Thus, while these
accounts are not exposed to the liar paradox, they are exposed to paradoxes
which are directly analogous.

I should note that paradox doesn’t really beset Davidsonian or model-theoretic
accounts of semantics. This is because both of these accounts avail them-
selves of a version of Tarksi’s solution, which we’ll visit properly in Section
1.4. However, we might for the moment note that the crucial element of the
solution is that these accounts do not provide a semantics for the truth pred-
icate (satisfaction relation, evaluation function) themselves. Leaving truth
out of the account still leaves plenty of interesting work for philosophers
of language and linguists, but we might think that the project to give our
language a semantics is not complete until truth too is also accommodated.

1.1.2.2. Is self reference problematic? An obvious idiosyncracy of the liar
sentence is that it refers to itself via the indexical “this”. Self-reference is a
difficult matter to get a good grip on. The fact that the liar sentence says
something about itself has a certain vertiginous quality. Moreover, we’re
much more accustomed to sentence which talk about things other than
themselves. For a particularly exciting example:

All dogs are mammals.
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1.2. GETTING FORMAL 11

Perhaps there’s something fishy about self-reference and perhaps we’d do
better to avoid it. This was Wittgenstein’s approach in the Tractatus [Wittgen-
stein, 2001].3

In the following section, we’ll show that the liar paradox can be formulated
without genuine self-reference and thus head off this line of investigation.
However, it’s also worth making a more positive remark about self-reference.
Consider the sentence:

This sentence contains 37 characters.

It doesn’t. But the very fact that we can so confidently say this demonstrates
that self-reference may not be so problematic after all.

1.1.2.3. Are inferences based on what a sentence say or means problem-
atic? A final worry is that the reasoning we used above made use of infer-
ences involving what a sentence means or says. These are murky concepts
to characterise and reasoning with them can lead to problems and fallacies.
This, of course, doesn’t licence us to conclude that the argument taking us
from the liar sentence to inconsistency is unsound. However, it should tell
us that a more thoroughgoing analysis is required. There are two options
we might take here:

(1) We could provide a sufficiently satisfying analysis of meaning that
shows that the argument goes through and could not be reasonably
revised to a weaker form which would block the argument.

(2) We could find a way of getting a version of the paradox that avoids
meaning altogether.

In the next section, we shall investigate option (2). This seems like a better
way to go in that any controversy that could have emerged in the account
of meaning developed in option (1) is avoided. However, in Section 1.2.4.1,
we’ll see an account which does exploit option (1).

1.2. Getting formal

In this section we are going to formulate a version of the liar paradox which
avoids (strict) self-reference and semantic vocabularly other than the truth
predicate. Our strategy has three steps:

3Of course, he did do it by saying that no proposition can refer to itself and in so doing
referred to that very proposition. Another pesky ladder to be pushed away.
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1.2. GETTING FORMAL 12

(1) We find a canonical way of representing, or better, coding the sen-
tences of our language. Our goal is to find an interpreted language
with sufficient expressive resources that it is, in some sense, able to
talk about its own syntax.

(2) We find a way of simulating self-reference and use this to produce a
sentence that says of itself that it is not true.

(3) We show that such a sentence leads to inconsistency using a canon-
ical natural deduction system of classical first order logic.

1.2.1. Coding.

1.2.1.1. Coding syntax. To get things started we need a language to work
with. We are going to use the language of arithmetic LAr = {0, 1,+,×}. We
do this because there is an easy way to use natural numbers to represent
the formula of LAr. Moreover, we’ll assume that the language of arithmetic
is interpreted in the standard way. Thus, we’ll work in the standard model
of arithmetic, N = {ω, 0N, 1N,+N,×N}.
However, I want to stress that this choice is arbitrary. We could have also
chosed a language that is able to talk about the syntactical objects them-
selves. For example, Quine explored theories of this kind in [Quine, 1996].
However, the benefit of using arithmetic is that it is very well understood by
logicians and mathematicians.

Rather than providing a formal definition, I’m going to illustrate how the
coding works in stages.

First of all we consider the syntax we need to be able to form sentence. This
involves both the logical and non-logical vocabulary.

We may do this as described in the following table.

= 0 1 + × ∀ ¬ ∧ ( ) v

0 1 2 3 4 5 6 7 8 9 10

You’ll notice that I need 10 letters to represent all the symbols and unfortu-
nately, I only have 9 arabic numerals to play with. To get around this, I’ll
just use the letter, a, to play the role of 10 in representing v. Thus, we have

= 0 1 + × ∀ ¬ ∧ ( ) v

0 1 2 3 4 5 6 7 8 9 a
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1.2. GETTING FORMAL 13

Then when we come to represent a formula of LAr, we simply write out the
numerals representing each piece of syntax in the same order they appear
in the formula.

EXAMPLE 4. Consider the formula 1 + 0 = 1; we represent this by 23101.

If we want to reprenent numbers other than 0 and 1, say the number 3, then
we don’t appear to have anything available to represent this. However, this
can simply be done by remember that 3 = 1 + 1 + 1.

EXAMPLE 5. Consider the formula 2 + 2 = 5. This is reprensented by the
number

82329382329082323232329.

I’ve used the parenthesis symbols to distinguish the terms representing the
2’s. Otherwise, we’d have the same sequence of symbols on either side of
the 0, which would make it impossible to recover our formula from the code
number.

Our next problem is representing formula using quantification. For this
we are going to use the symbol v. However, we may want formulae which
use more than one variable. To do this we usually use a list of variables
v0, v1, v2. Of course, we have no way of representing subscripts with our
meagre vocabularly, but we can just use the parentheses for this. Thus
when every we write vn, we can just write v(n) instead.

EXAMPLE 6. Consider the formula ∀v0∃v1(v0 = v1). We first re-write this as

∀v(0)¬∀¬v(1)(v(0) = v(1))

and then we give it the following number:

5a819656a8298a8190a8299.

Now given that we have a new numeral a, we might ask what number this
represents. The answer to this is that we move from a base 10 system to a
base 11 system. Thus,
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1.2. GETTING FORMAL 14

1a7 = 7× 110 +

10× 111 +

1× 112

= 7 + 11 + 121

= 139.

So now we know how to assign formulae of LAr natural numbers, but this
still doesn’t gives us a way of representing then in the language LAr. For this
we use the trick of re-writing n as 1 + ... + 1 (n many times). This will then
be the final code representing a formula. We write pϕq for the appropriately
long string of 1 + ...+ 1.

EXAMPLE 7. Consider the formula 0 = 0. This is represented by the number
101, which in base 10 is

1× 112 + 1× 110 = 122.

So p0 = 0q = 1 + 1 + ...+ 1 with 122, 1s.

As you can see, codes get very big very quickly. But this isn’t a problem,
there are plenty of natural numbers.

1.2.1.2. Recursive functions. So this gives us the tools to represent for-
mulae in the language of arithmetic. However, we want and are able to do
more than that: we can also use the language of arithmetic to say a lot
of interesting things about those codes. To make this clearer I’m going to
introduce the notion of a recursive function.

But first, we start with the notion of an algorithm. Essentially, an algorithm
is a set of instructions for how to perform a pencil and paper calculation of
some kind. It’s idealised in the sense the we might need an infinite amount
of paper and the calculation might never finish.

For example, Turing developed his Turing machines to make this idea more
precise. He used an infinite piece of tape consisting of squares which are
either blank or contain the symbol 1. We are then permitted to move to the
left or right, read the square upon which we land and to either leave it as it,
or change it. In this model an algorithm is a set of instructions which meet
these constraints.
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1.2. GETTING FORMAL 15

From here we may define a recursive function:

DEFINITION 8. A (partial) recursive function is a (partial) function which takes
an algorithm and a Turing tape as input and returns as output the Turing
tape that results one there are no more instructions left to complete - if such
a stage occurs; otherwise the output is undefined.

REMARK. (i) Note there are cases where the instructions would never be com-
pleted. For example, if we instructed the machine to simply keep moving to
the right. This is analogous to what happens when a computer programme
hangs (or gets stuck in a loop). This is why the functions are partial.

(ii) Note that the notion of of a partical recursive function is extensional while
an algorithm is intensionsal. There could be many algorithms which give the
same partial recursive function. This is similar to the relationship between
sets and properties.

It turns out that any computable function that anyone has every come up
with can be modelled in this simple system: this is its power. However, there
are many other models which have the same capacity. For example, Gödel
provided a schematic way of representing algorithms, which yield exactly
the same recursive functions where the model of computation is the natural
numbers rather than Turing tapes. I won’t write out a full definition here,
but this leads us to an alternative definition.

DEFINITION 9. A (partial) recursive function is a (partial) function which uses
an instance of Gödel schema as instructions, takes a natural number as
input and gives a natural number as output - if it has one; and is undefined
otherwise.

Given that we’re working in the language of arithmetic, this definition is
particularly convenient. But there are many more ways of producing models
for computation. This leads to the Church-Turing thesis.

THESIS: The functions computable via a pen-and-paper algorithm are ex-
actly the partial recursive function.

So the important thing here is the the left-hand-side of the thesis is informal.
We are saying that any function performable by an idealised person can be
modelled using a partial recursive function. Then using Definition 9, we
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1.2. GETTING FORMAL 16

can find an algorithm from the Gödel schema which gives the same partial
function.

Now we just need one more thing: a way of connecting the Gödel schema
to the language of arithmetic. The following theorem, which we won’t prove,
covers this:

THEOREM 10. Let e be an algorithm satisfying the Gödel schema and let fe :

ω ⇁ ω be the partial recursive function derived from it. Then there is some
formula ψe(v0, v1, v2) from LAr such that

fe(m) = n ⇔ N |= ∃xψe(m,n, x).

With this theorem, we can now take any pen-and-paper algorithm and rep-
resent it with a formula of arithmetic.

1.2.1.3. Saying things about codes in arithmetic. This puts us in a posi-
tion to say things about syntax using formulae of arithmetic.

EXAMPLE 11. Consider the property of being a well-formed formula of the
language of arithmetic. It should be clear that we could write a set of in-
structions that, if followed, will tell us whether or not some string of symbols
is well-formed or not. Then:

(1) by the Church-Turing thesis, we can then see that there is partial
recursive function corresponding to this set of instructions;

(2) so it can be represented by an algorithm from the Gödel schema;
and

(3) thus by some formula WFF (x) from the language of arithmetic such
that

x is well-formed ↔ N |= WFFpxq.

EXAMPLE 12. Let us consider the operation of substitution. So take a well-
formed formula ψ(v0) and consider the process of substituting the symbol a
for every v0 occuring in ψ(v0). We write this as ψ(a). A little reflection should
convince us that we can write out a set of instructions (i.e., an algorithm)
for this process. Thus, by the same argument as in the previous example,
we can find a formula Sub(v0, v1, v2) in the language of arithmetic such that

ψ(a) is the result of substituting a for v0 in ψ(v0)

↔

N |= Sub(pψ(a)q, paq, pψ(v0)q)
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1.2. GETTING FORMAL 17

REMARK 13. So Sub(k,m, n) is true in N if n is the code of a formulae ψ(v)

with one free variable and k is the code number of the formula resulting
from substituting the numeral representing m into the free variable space in
ψ; i.e., z = pψ(m)q.

Indeed, these examples illustrate the the following more general principle
holds:

Any property of syntax that can be verified by a pen-and-
paper algorithm can be represented by a formula of LAr in
the standard model of arithmetic.

1.2.2. Something like self-reference. We are now, finally, in a position
to simulate the effect of self-reference using arithmetic coding.

THEOREM 14. (Semantic diagonal lemma) Let ϕ(x) be a formula from LAr with
at most one free variable. Then there is some sentence G in the language of
arithmetic such that:

N |= G↔ ϕpGq.

PROOF. Define A(x) to be such that:

A(x) := ∃y(Sub(x, x, y) ∧ ϕ(y)).

Let a = pA(x)q; G := A(a) and g = pGq. Then clearly,

N |= ∀y(Sub(a, a, y)↔ y = g).

Thus,

N |= A(a)↔ ∃y(Sub(a, a, y) ∧ ϕ(y))

⇔ N |= A(a)↔ ∃y(y = g ∧ ϕ(y))

⇔ N |= A(a)↔ ϕ(g)

⇔ N |= G↔ ϕpGq.

�

The theorem still holds in language with are expansions of LAr. Let us add
a new predicate T , to LAr and call the result LT .
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1.2. GETTING FORMAL 18

1.2.3. Inconsistency again. We are now ready to prove our formal ver-
sion of the liar paradox.

First let us use Theorem 14, to get a sentence λ from LT such that:

N |= λ↔ ¬Tpλq.

Intuitively, this sentence says of itself that it is not true. However, note
that no genuine self reference has occured here. In the standard model N
we have that λ is the case iff λ’s code is not in the extension of the truth
predicate.

Next we need to say how the truth predicate works. For ths, we’ll employ
Tarski’s T -schema.

(T-schema) For all ϕ ∈ SentLT , ϕ↔ Tpϕq.

The underlying idea here is a kind of transparency. If ϕ is the case then so
is the sentence saying that ϕ is true and vice versa.

We can now demonstrate the problem more precisely.

Tpλq(1) Thm
Tpλq→ λ
λ

Tpλq(1) Ax
Tpλq→ ¬λ
¬λ (1)⊥

¬Tpλq
Thus we see that ` ¬Tpλq; and so

Thm¬Tpλq Thm¬Tpλq→ ¬λ
¬λ

Ax¬Tpλq Thm¬Tpλq→ λ
λ

⊥
And so the system is is inconsistent.

REMARK. Notice that self-reference and problems about meaning have not
played any part here.

So what have we shown here. Informally, we’ve shown the language of arith-
metic cannot support a truth predicate. However, there are really two results
contained here.

FACT 15. (i) The truth predicate is undefinable: there is no formula ψ(x) ∈ LAr
which is such that for all sentence ϕ ∈ LAr:

N |= ψpϕq↔ ϕ.
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1.2. GETTING FORMAL 19

(ii) The truth predicate is inadmissible: no model M containing a coding
system may be expanded with a relation symbol T and interpreted in such a
way that for all ϕ ∈ LT :

〈M, TM〉 |= Tpϕq↔ ϕ.

The first result is more important to mathematical logic. The second is more
important in philosophy.

REMARK 16. The upshot of this result is that the distinction between ob-
ject language and metalanguage is not mere pragmatic convenience but and
absolute necessity.

EXERCISE 17. There is a certain similarity between the liar sentence and
Gödel’s undecidable sentence. Does the Gödel sentence lead to inconsis-
tency? Why not?

1.2.4. Other ways of getting liars.

1.2.4.1. Contingent liar sentences. Consider the following sentence:

The first sentence written in italics in Section 1.2.4.1 is not
true.

By Tarski’s T -schema we have:

p iff S is true,

where p is the proposition expressed by the sentence S.

Combining these we have:

The first sentence written in italics in Section 1.2.4.1 is not
true iff the first sentence written in italics in Section 1.2.4.1
is true.

This is clearly a contradiction.

More formally we might reconstrue this as follows:

• Let I(x) mean that x is the first sentence written in italics in Section
1.2.4.1.

We might model the liar sentence above as: ∀x(Ix→ ¬Tx).

Suppose ∀x(Ix → ¬Tx). We take it as a fact that ∃!xIx. Fix such an object
and call it a. Then we have ¬Ta. Since there is only on object a such that Ia,



Dra
ft

Onl
in

e v0
.7c ©

T
ob

y
M

ea
d
ow

s
1.2. GETTING FORMAL 20

we have a = p∀x(Ix → ¬Tx)q and so we have ¬∀x(Ix → ¬Tx). Let b be such
that Ib and Tb. Then since there is a unique object b such that Ib we have
b = p∀x(Ix → ¬Tx)q; and so ∀x(Ix → ¬Tx): which is a contradiction. Thus
¬∀x(Ix→ ¬Tx).

Let b witness this; i.e., Ib∧Tb. Then this gives us ∀x(Ix→ ¬Tx). But then we
have ¬Tb and so ¬∀x(Ix→ ¬Tx): contradiction.

1.2.4.2. Liars via indexicals. Consider the following sentence:

This sentence is not true.

Using a semantics for indexicals as given by Kaplan in [1989, 1978], we
could give this sentence a formal semantic representation.

1.2.4.3. Liars via the metalanguage. We can also make liar sentence by
just assuming that our object language has names to represent all the sen-
tences of LT . So rather than assuming that our object language possesses
the expressive resources to define a coding system, we build it up, so to
speak, from the outside.

For example, we might suppose we are working in a language L with an
interpretation M in which every formula ϕ of L has a constant symbol cϕ
representing it. Approaches along these lines are taken by Kremer in [1988]
and Ripley in [Forthcoming].

However, they are not without there oddities. Suppose we start with a lan-
guage L, which contains a truth predicate T , and inductively enrich the
language with a set of constant symbols C such that:

• every sentence of L has a constant symbol; and
• every new sentence which can be formed from from the new constant

symbols and L is represented by a constant symbol.

Call the result of the obvious way of doing this, L+. Then it turns out that
there will be no sentence λ in L+ such that λ = ¬Tcλ. There are no liar
sentence in L+.

This is a little weird. We’re trying to develop a language capable of talking
about its own syntax and we don’t get a liar sentence. The usual solution
to this is to just stipulate that there is such a sentence. So we say that L
contains a sentence λ such that λ = ¬Tcλ.
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1.3. What should we do?

So now we know there is a problem with the truth predicate which has
nothing to do with semantic reasoning or self-reference. How should we
address it? Feferman partitions the space of solutions among those which
revise:

(1) truth;
(2) language; or
(3) logic.

Along each path we must accept that something very intuitive and obvious
does not work as we supposed it did [Feferman, 1991]. We’ll see each of
these in more detail below, but here is quick overview of the landscape.

1.3.1. Truth principle revisers. The first group revise the way in which
the truth predicate works. The only rule we have enforced for the truth
predicate is the T -schema, so one direction must go.

For example, in Leitgeb’s [2005], we are given a system in which:

Tpϕq→ ϕ for all ϕ ∈ SentLT

is the case but we do not have

ϕ→ Tpϕq for all ϕ ∈ SentLT .

1.3.2. Language revisers. The second group opts to revise our concep-
tion of language and takes it that there are multiplicity of languages each of
which has a truth predicate, but not of which contains that truth predicate.
So for example, given the language of arithmetic, Tarski provides a truth
predicate for that language such that

Tpϕq↔ ϕ for all ϕ ∈ SentLAr .

So we do have a version of the truth predicate for LAr, but this is not a truth
predicate for the full language LT .

1.3.3. Logic revisers. The final group, with which we’ll be particularly
concerned are the logic revisers. The two most famous examples here are:

(1) Kripke’s gappy approach which allows a third truth value to repre-
sent a kind of indeterminacy [1975]; and
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1.4. TARSKI’S SOLUTION 22

(2) Priest’s glutty approach which takes it the argument to inconsis-
tency is correct and the liar sentence is actually both true and false
[1979].

1.4. Tarski’s solution

1.4.1. Truth for arithmetic. We now examine Tarski’s solution to the
liar paradox. First of all we show how one might expand LAr with a truth
predicate which satisfies the T -schema for sentences of LAr.

Let WFFLAr(x) be a formula of LAr which is true of x iff it is a well-formed
formula of LAr.

Let AtomLAr(x) be a formula of LAr which is true of x iff it is an atomic formula
of LAr.

Let TAtomLAr(x) be a formula of LAr which is true of x iff it is a true atomic
formula of LAr.

REMARK 18. Note that we can devise a simple pen-and-paper algorithm to
verify whether an atomic formulae (i.e., something for the form t = s for
terms of LAr) is correct or not; thus it may be represented by a formula of
LAr.

Let xay be a function represented by a formula of LAr such that xay is the
concatenation of x and y.

Let sub(y, n, i) be a function represented by a formula of LAr such that sub(y, n, i)
is the result of substituting the numeral n for vi wherever it is very in the
formula coded by y.

Let Φ(T ) be the following sentence of LAr - for all x

• if WFFLAr(x), then
– if AtomLAr(x), then T (x)↔ TAtomLAr(x);
– ∀y, if x = p¬qay, then T (x)↔ ¬T (y);
– ∀y∀z, if x = yap∧qaz, then T (x)↔ T (y) ∧ T (z); and
– ∀y∀i, if x = p∀viqay, then T (x)↔ ∀n T (sub(y, n, i)); and

• if ¬WFFLAr(x), then ¬Tx.

THEOREM 19. LetM be a model for LT which is an expansion of the standard
model of arithmetic N. This means that L interprets the vocabularly of LAr
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1.4. TARSKI’S SOLUTION 23

in the same way as N, but the interpretation of the truth predicate T is not
constrained. Then ifM |= Φ(T ), we have

M |= ϕ↔ Tpϕq

for all ϕ ∈ LAr.

PROOF. By induction on the complexity of sentences. �

This is pretty close to what we want. We have the T -schema true for all
sentence in the language LAr, but this does not extend to the full language LT
with the truth predicate. For sentences ϕ ∈ LT\LAr (the sentences involving
the truth predicate) we have

M |= ¬Tpϕq.

This is why the liar sentence λ is not a problem. If we look at how it is
constructed, we see that it makes use of the truth predicate and thus M |=
¬λ.

But at the same time this causes other problems. For example, while we
have

M |= Tp0 = 0q,

we have
M 6|= TpTp0 = 0qq.

This seems very strange!

1.4.1.1. Ordinary semantics. There is a sense that when we do model-
theoretic semantics we are taking up this limited solution. Standardly, we
do semantics from the perspective of a metalanguage where some kind of
satisfaction predicate |= is used to tell us whether or not a sentence is true
in a particular model. This allows us to develop a theory of the meaning of
our expressions.

However, the satisfaction relation is not itself part of the object language.
Thus, our semantic theory is not capable of giving us a theory of the meaning
of the satisfaction relation: our semantics is, in some sense, incomplete.

We might then try to add the satisfaction relation to the object relation to
the object language, but this will result in a paradox very similar to the liar.

EXERCISE 20. Describe the paradox of satisfaction.
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1.4.2. A Tarskian Solution. So our problem was that we only got the
T -schema for sentences of the restricted language LAr and not LT . One way
of addressing this is to characterise a second truth predicate, T †, which gets
the T -schema for sentences of LT . Let LT,T † be LT expanded by the new truth
predicate T †.

Let Φ†(T †, T ) say that for all x

• if WFFLT (x), then
– if AtomLAr(x), then T †(x)↔ TAtomLAr(x);
– ∀y, if x = pTyq, then T †x↔ Ty;
– ∀y, if x = p¬qay, then T †(x)↔ ¬T †(y);
– ∀y∀z, if x = yap∧qaz, then T †(x)↔ T †(y) ∧ T †(z); and
– ∀y∀i, if x = p∀viqay, then T †(x)↔ ∀n T †(sub(y, n, i)); and

• if ¬WFFLT (x), then ¬T †x.

Then we have the following:

THEOREM 21. If M is a model of LT,T † which is an expansion of N and M |=
Φ(T ) ∧ Φ†(T †, T ) then for all ϕ ∈ LT

M |= T †pϕq↔ ϕ.

PROOF. By induction on the complexity of sentences. �

Of course, we can formulate a new liar sentence λ† using the new truth
predicate T † which is such that:

M |= λ† ↔ ¬T †pλ†q

but if we look back to the diagonal lemma, we see that this sentence will
involve the truth predicate and the argument to inconsistency is blocked
since

M |= ¬λ†.

But as before, we have counter-intuitive features as well. For example, while
we have

M |= T †p0 = 0q & M |= T †pTp0 = 0qq

we also have
M |= T †pT †p0 = 0qq.
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1.4.2.1. Going further still. We can address this kind of worry by going
even further. Let us consider a language with countably many truth predi-
cates {Tn | n ∈ ω}.

Let Γ be the infinite set of sentences consisting of the union of the following
sentences for each n ∈ ω,

• if WFFLTn (x), then
• if AtomLAr(x), then Tn+1(x)↔ TAtomLAr(x);

– ∀y, if x = pTnyq, then Tn+1x↔ Tny;
– ∀y, if x = p¬qay, then Tn+1(x)↔ ¬Tn+1(y);
– ∀y∀z, if x = yap∧qaz, then Tn+1(x)↔ Tn+1(y) ∧ Tn+1(z); and
– ∀y∀i, if x = p∀viqay, then Tn+1(x)↔ ∀n Tn+1(sub(y, n, i)); and

• if ¬WFFLTn (x), then ¬Tn+1x.

Then we have the following.

THEOREM 22. in any modelM expanding N with an intepretation for each Tn

for n ∈ ω whereM |= Γ we have for all n ∈ ω and all sentences ϕ from LTn

Tn+1pϕq↔ ϕ.

PROOF. By induction on truth level and complexity of sentences. �

We can go further if we like, but this will do.

For every level n, there will be a liar sentence λn for which the argument to
inconsistency is blocked since we have

M |= ¬λn.

1.4.3. Toward Kripke’s approach.

1.4.3.1. Kripke’s objection. Kripke observes that Tarski’s solution is prob-
lematic. In the first instance, our natural language doesn’t have labels on
its truth predicates. We know that snow is white but we don’t think it’s true1

that snow is white. We just say that it’s true.

So we have to admit that Tarski’s solution fails to provide a description of
our ordinary use of the concept of truth.

But this is not the last word against a hierarchical approach. While it is
clear that we do not make explicit use of indexed truth predicates, perhaps
we use the implicitly. So perhaps when we use the truth predicate, it really
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ought to have a label on it, but most of the time it makes no difference so
we omit it in our ordinary speech.

The first thing to note is that this retort appears to be drawing a very long
bow if it’s trying to describe our ordinary practice. While it’s a fact that we
actually don’t get into trouble using the truth predicate, this fact is some-
what mysterious. As such, saying that we are actually just lazily using a
the immensely hierarchical approach seems far fetched. To this, one might
respond by drawing an analogy with grammar. Although people are quite
able to speak English in accord with a set of grammatical rules, very few of
speakers would be able to describe those rules. Similarly, one might argue
that ordinary speaker are able to manipulate the truth concept according in
accord with Tarksi’s theory of levels, but that should not give us reason to
think they were able to outline that theory.

More safely, we could stay with a normative approach to truth theories. As
such, we might say that Tarksi’s hierarchical approach gives us a way of
using the concept of truth without falling into paradox. It strikes me that
this is just correct. Moreover, I think Kripke’s objection has no force here.

Kripke, however, has more to say about the implicit usage defence. He gives
the following example, which will be helpful.

EXAMPLE 23. Consider the sentence, as uttered by Dean,

(A) All of Nixon’s utterances about Watergate are false.

If we were using the Tarski’s hierachy, we might try to select a level for the
falsity predicate higher than any level used in Nixon’s utterances. Call this
the level selection principle.

However, in ordinary practice, Dean will not be in a position to know the
levels of Nixon’s utterances. Moreover, Nixon may have said something like,

(B) Everything Dean says about Watergate is false.

In this situation, we are faced with a kind of bind. If we are to follow the same
principle we used for (A) in labelling the truth predicate used implicitly in
(B), we are supposed to chose a level higher than any used in Dean’s relevant
utterances. But clearly (A) is one of those utterances.

This means that the level selection principle is not viable.

The upshot of this the following conclusion:
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We cannot assign levels to sentence on the basis of syntactic
form alone.

There are two related reasons for this:

(1) It’s often implausible that we could know the levels of all the state-
ments captured by a universal quantification; and

(2) Using one obvious principle for level assignment leads to problems.

REMARK 24. This is a terrible argument, but I think the conclusion is correct.
While (1) should be taken seriously in that it highlights a real problem for
any plausible descriptive project, it has no impact on a normative project.
However, (2) is just too weak for us to lever the conclusion. So what if
one method of assigning levels doesn’t work! The conclusion is that no
method can do it. Charitably, I think we should read Kripke’s use of the
level selection principle as illustrative and suggestive of a deeper and more
interesting argument, which can be provided.

Now where does Tarksi’s argument stand after this. I think we should agree
that there is no way of assigning levels to sentences on the basis of the syn-
tactic form alone. But still there is a further turn available for the Tarskian.
Perhaps there is some fact of the matter regarding which level a statement
should be situated. This kind of metaphysical solution may seem somewhat
implausible, but, in fact, we’ll see that Kripke’s solution leads us into exactly
the same situation. Kripke’s construction gives every statement a level. So
while we might see this as a problem for Tarski, Kripke isn’t giving us much
better.

From this, I take it that while the argument lead us to an interesting result
(which is not proven), it has limited impact on the Tarskian. The most
troubling problem is the initial one: Tarksi forces us to use a hierarchy of
truth predicates and this is in poor faith with our actual practice.

1.4.3.2. Toward Kripke’s solution. With regard to this problem, Kripke
provides us with a solution. We’ll develop this properly next week, but for
now I’ll make a few motivating remarks.

The problem we’re facing in the liar paradox should be reminiscient of the
problem faced in set theory by Russell’s paradox. Let’s consider two kinds
of solution to Russell’s paradox.
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(1) Ramified type theory - This was Russell’s solution. It’s very difficult
to describe so I’ll settle for givig a quick desciption of its simpler
cousin: the simple theory of types. So you’ve probably heard of
second order logic. In this logic we are able to quantify not just over
individuals but also over classes of individuals. We can also have
third order logic where we have individuals, classes and families of
classes. In fact for any n we can set up nth order logic. Simple
type theory is theory we get when we combine all the nth order logics
together. It avoids Russell’s paradox since the indexing of each level
stops us from being able to form the Russell set.

(2) ZFC set theory - With this approach we start with a single relation
symbol ∈ and form a theory of sets, where sets can be members
of sets which are members of sets and so on. Russell’s paradox is
avoided by weaking comprehension to the Separation Axiom.

We don’t have time to get into too much detail here, but the important think
to note is that Russell’s type theoretic approah bears a strong resemblance
to Tarski’s hierarchy. With Tarski, we have a hierarchy of languages and
with Russell we have a hierachy of types of collection. In each case, paradox
is avoided by breaking things into discrete levels.

However, both approaches also have the problem of fragmenting intuitive
concepts. Tarksi fragments truth, while Russell fragments the membership
relation. ZFC, however, provides a way of keeping a univocal member-
ship relation and still avoiding paradox. A similar approach to truth would
provide a solution to Kripke’s problem. We might describe the situation a
follows:

Rammified type theory is to Tarski’s truth hierarchies

as

ZFC set theory is to ?

Next week, we’ll see how Kripke’s approach fills this gap.
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CHAPTER 2

Kripke’s construction, its cousins & what you can do with

them

This week we’re going to focus on modern solution to the liar paradox. We’ll
run through the following sections:

(1) Kripke’s solution - we describe the basics of Kripke’s approach to the
paradox.

(2) The research landscape of formal theories of truth.
(3) Consistency and non-triviality - what else can you do with Kripke’s

construction?

29
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2.1. Kripke’s solution

2.1.1. An intuitive sketch. We might see the idea for Kripke’s construc-
tion emerging out of the following observations:

(1) There’s nothing weird about say that 0 = 0 is true; or more formally,
Tp0 = 0q.

(2) Similarly, there’s nothing weird about saying TpTp0 = 0qq or TpTpTp0 =

0qqq.
(3) No matter how many truth predicates you put in front of 0 = 0, the

result is still true.
(4) But there’s something different about a sentence which says of itself

that it isn’t true, or indeed, that it is true.

There’s something safe about the sentences in (1) and (2), but the sentences
described in (4) are risky or downright inconsistent.

The essential idea of Kripke’s construction is to take truths that are safe and
use them to find further safe truths. For example we know that 0 = 0 is true,
so Tp0 = 0q is true and so is TpTp0 = 0 = 0qq. On the other hand, we know
that the liar sentence is not safe at all, so we want to avoid it.

Our goal is to find an extension which we’ll denote, ΓsK, for the truth predi-
cate T . ΓsK will be a set of of true sentence.

We’re going to define this inductively using transfinite recursion. We’ll set
this out formally soon, but for the moment we’ll just outline the main idea
of the induction.

We’ll index the symbol Γ with an ordinal α to indicate how far we have gone
in the process. (More formally, this means that we have a function Γ· : On→
P(SentLT ).) The process works like this:

(1) Start off by assuming that nothing is in the extension of the truth
predicate. Call this Γ0.

(2) Then add all the sentences ϕ which are true in the standard model
of arithmetic and call this Γ1.

(3) Now see what sentences would become true if we assumed Γ1 was
the extension of the truth predicate. So we treat Γ1 as a kind of
educated guess. Call the result Γ2.

(4) Use Γ2 as a guess to obtain Γ3.
(5) Keep doing this, until nothing more can be done.
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2.1.2. Formal definition. So this should give some feeling for how the
construction works, but we need to be more precise if we’re to see how this
gets us of the trouble cause with the liar paradox.

The basic idea is to leave λ in a kind of semantic gap. To this we use
a strong Kleene evaluation scheme. I’ll give a slightly different version of
this to the one you’ve seen. Rather than defining a semantic evaluation
function with three values, I’m going to define it so that it only has two value
and is sometimes undefined. A function of this kind is known as a partial
function. From a logical point of view, the difference is merely cosmetic.
From a philosophical view, this manner of presentation perhaps gives some
insight as to why Kripke argued that his construction still had a classical
semantics.

This way of doing semantics requires us to revise the way we interpret rela-
tion symbols. Consider a 1-place relation symbol P in the ordinary seman-
tics for first order logic. When we intepret P in a model we get an extension
PM. This the set of things from the domain M ofM which satisfy P , i.e.,

{d ∈M | M |= Pd}.

If we want to get the things that don’t satisfy P , i.e.,

{d ∈M | M 6|= Pd}.

In the classical setting, this is the same as the set of objects which satisfy
the formula ¬Pv0, i.e.,

{d ∈M | M |= ¬Pd}.

There is a sense in which ¬ and |= commute; i.e., their order is unimportant.
However, with a partial semantics we do things differently. Given a 1-place
relation symbol P , the set of objects that don’t satisfy P and those which
satisfy ¬Pv0 are not necessarily the same. The reason for this is that there
may be objects d ∈M such that it is not defined whether d is in the extension
of P or not. These objects are not in the extension of P but still may not
satisfy ¬Pv0.

To make sense of this, we interpret relations as having both an extension
an an anti-extension. More formally, given a language L = {P}, we say that
M = 〈M, 〈P+M, P−M〉〉 is a model for L if

• P+M ⊆M (the extension of P );
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• P−M ⊆M (the anti-extension of P ); and
• P+M ∩ P−M = ∅.

This can be easily generalised to models with constant symbols and multiple
relation symbols. Function symbols are more difficult.

REMARK 25. The main difference between a partial model and a classical
model is that the extension and anti-extension of a relation symbols are
not required to partition the (appropriate product of the) domain into an
extension and anti-extension which exhausts the domain.

In our application to truth, we’re going to make things a little easier on
ourself:

• We’ll generate our construction over the standard model of arith-
metic;
• We’ll fix the interpretation of all non-logical vocabularly except the

truth predicate; and
• We’ll make the truth predicate the only partial predicate in the model.

This means that the only thing that can change is our interpretation of the
truth predicate. Intuitively, the construction will allow us to build better and
better interpretations or guesses about the extension and anti-extension of
truth.

We’ll need some way of indicating which guesses we are considering. Let’s
define this more formally.

DEFINITION 26. Let Guess be the set of pairs 〈Φ+,Φ−〉 of sets of sentences
from LT such that

Φ+ ∩ Φ− = ∅.

We use upper case Greek letters, Φ,Ψ,Γ,∆... to denote guesses; and write Φ+

and Φ− to denote the extension component and anti-extension component
of Φ respectively. Moreover, Φ = 〈Φ+,Φ−〉.

We are now ready to define our semantic evaluation predicate. Recall that
our sketch construction was set up so that we used the truth guess from
the previous level in order to define the new level. Our semantic evaluation
predicate is designed to do this - as can be seen from the initial typing.
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Intuitively, V al takes a guess (which is a partial interpretation of the truth
predicate) and a sentences and tell us if it is true or not according to that
guess, if it can.

DEFINITION 27. We define the partial function V al : Guess × SentLT ⇁ 2 by
recursion on the complexity of sentences as follows:

V alΦ(ϕ) = 1 iff (ϕ ∈ AAtom ∧ ϕ ∈ AArith)∨
(ϕ := Tpψq ∧ ψ ∈ Φ+)∨
(ϕ := (¬ψ) ∧ V alΦ(ψ) = 0)∨
(ϕ := (ψ ∧ χ) ∧ V alΦ(ψ) = 1 ∧ V alΦ(χ) = 1)∨
(ϕ := (∀xψ) ∧ ∀n ∈ ω V alΦ(ψx(n)) = 1))

V alΦ(ϕ) = 0 iff (ϕ ∈ AAtom ∧ ϕ /∈ AArith)∨
(ϕ := Tpψq ∧ ψ ∈ Φ−)∨
(ϕ := (¬ψ) ∧ V alΦ(ψ) = 1)∨
(ϕ := (ψ ∧ χ) ∧ (V alΦ(ψ) = 0 ∨ V alΦ(χ) = 0)∨
(ϕ := (∀xψ) ∧ ∃n ∈ ω V alΦ(ψx(n)) = 0))

If V alΦ(ϕ) is undefined for some guess Φ and sentence ϕ, we shall write
V alΦ(ϕ) =∞.

EXAMPLE 28. Suppose Φ = 〈∅, ∅〉. Then V alΦ(Tp0 = 0q) =∞.

EXERCISE 29. Let Φ = 〈∅, ∅〉. What is the value of:

(1) V alΦ(0 = 0);
(2) V alΦ(¬Tp0 = 0q)?

2.1.2.1. Jump function. With the V al function defined, we are ready to
define the operation used at the successor stage of our induction definition.
This is the logical engine which allows us to move from stage to stage in the
definition. This is often known as the jump function. It takes us from one
guess to a (hopefully) better guess - note the initial typing of the function. It
is defined as follows:

DEFINITION 30. Let j : Guess→ P(SentLT )2 be such that:

j(Φ) = 〈{ϕ | V alΦ(ϕ) = 1}, {ϕ | V alΦ(ϕ) = 0}〉

So the intuitive idea here is that given guess Φ, we may form a better guess
j(Φ) by:
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• taking as our new extension, j(Φ)+, the sentences which are true
according to Φ; and
• taking as our new anti-extension j(Φ)−, the sentences which are false

according to Φ.

REMARK 31. Note that the range of j is subset of Guess. Since V al is a
function, given any Φ and ϕ we never have

V alΦ(ϕ) = 1 & V alΦ(ϕ) = 0.

2.1.2.2. Truth definition (sK). With the jump function in hand, we can
now set out the induction construction which gives us a sequence of improv-
ing guesses about the extension and anti-extension of the truth predicate.

DEFINITION 32. Let Γ· : On⇁ Guess be a partial function defined as follows:

Γ0 := 〈∅, ∅〉

Γα+1 := j(Γα)

Γλ := 〈
⋃
α<λ

Γ+
α ,

⋃
α<λ

Γ−α 〉 for limit λ.

This function is partial in the sense that it could fail to be defined at some
ordinal. The only thing that could go wrong is that we may not be able to
apply the jump function at some ordinal. The only reason this could occur
is that Γα /∈ Guess for some α; i.e., Γ+

α ∩ Γ−α 6= ∅. If that were to occur then the
jump function simply could not be applied.

This means that we cannot apply the Transfinite Recursion Lemma just yet.
We need to show a little more. But once that is we’ll actually see that the
function is total; i.e., defined over all the ordinals. We prove a short sequence
of lemmas to establish the result, after which we’ll be able to define ΓsK.

DEFINITION 33. (i) Let Φ and Ψ be guesses. Let Φ v Ψ if Φ+ ⊆ Ψ+ and Φ− ⊆ Ψ−;

(ii) Let Φ tΨ = 〈Φ+ ∪Ψ+,Φ− ∪Ψ−〉; and

(iii) Let
⊔
α<β Φα = 〈

⋃
α<β Φ+

α ,
⋃
α<β Φ−α 〉.

LEMMA 34. j is montonic: i.e., if ∆ ⊆ Γ, then j(∆) v j(Γ).

PROOF. By induction on the complexity of sentences. Here are a couple
of cases.
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2.1. KRIPKE’S SOLUTION 35

Suppose ϕ := ψ ∧ χ. Suppose (ψ ∧ χ) ∈ j(∆)+. Then

V al∆(ψ ∧ χ) = 1 = V al∆(ψ) = V al∆(χ).

Then by induction,

1 = V alΓ(ψ) = V alΓ(χ) = V alΓ(ψ ∧ χ).

Suppose ϕ := Tpψq. Then supposeTpψq ∈ j(∆)+. This means that V al∆(Tpψq) =

1 and so pψq ∈ ∆+ ⊆ Γ+. This then means that V alΓ(Tpψq) = 1 and so
Tpψq ∈ j(Γ)+.

�

LEMMA 35. If Γβ ∈ Guess for all β < α, then Γα ⊆ Γα+1.

PROOF. By transfinite induction. Suppose for all β < α, Γβ v Γβ+1 (the
induction hypothesis). We show that the claim also holds for α.

Suppose α = 0. Then

∅ = Γ+
0 ⊆ {ϕ ∈ LAr | N |= ϕ} = Γ1.

Similarly for the anti-extension.

Suppose α = β + 1. Then since Γβ v Γβ+1 we have j(Γβ) v j(Γβ+1) by Lemma
34. Thus,

Γα = Γβ+1 = j(Γβ) v j(Γβ+1) = Γβ+2 = Γα+1.

Suppose α is a limit. Then Γα =
⋃
β<α Γβ. Thus, for all β < α, we have:

• Γβ v Γβ+1 = j(Γβ);
• Γβ v Γα; and
• j(Γβ) v j(Γα).

Thus for all β < α, Γβ v j(Γα); i.e.,

Γα =
⊔
β<α

Γβ v j(Γα) = Γα+1.

�

We now come to our key lemma. It has two parts. The first shows us that
our Γ function is totally well-defined and the second part will allow us to
define ΓsK.
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LEMMA 36. (i) Γ+
β ∩ Γ−β = ∅ for all β (Γβ is always a guess); and

(ii) For α ≤ β, Γα v Γβ (Non-strict increasing-ness).

PROOF. We prove (i) and (ii) together by transfinite induction. Let us
assume as an induction hypothesis that for all δ < β we have:

(1) Γ+
δ ∩ Γ−δ = ∅; and

(2) ∀α ≤ δ, Γα v Γδ.

We show that these claims also hold for β.

We first prove (i).

Suppose β = 0. Then Γ0 = 〈∅, ∅〉; thus, Γ+
0 ∩ Γ−0 = ∅.

Suppose β = δ+1. The definition of the jump function ensures that the claim
is upheld. See Remark 31.

Suppose β is a limit ordinal and for a contradiction suppose that Γ+
β ∩Γ−β 6= ∅.

Then there must be some ϕ such that ϕ ∈ Γ+
δ1

and ϕ ∈ Γ−δ2 for δ1, δ2 < β, since
nothing new is added at stage β. Suppose δ1 < δ2. But by (2) of our induction
hypothesis Γδ1 v Γδ2 thus, we have ϕ ∈ Γδ2 which means that Γ+

δ2
∩ Γ+

δ1
6= ∅

contradicting (1) of our induction hypothesis. Similarly if δ2 < δ1.

Now we prove (ii).

Suppose β = 0. Suppose β = 0; thus, Γ0 v Γ0.

Suppose β = δ + 1. Suppose α = δ + 1 = β; then it is clear that Γα v Γβ.

So suppose α ≤ δ. Then by (2) of the induction hypothesis, we have Γα v Γδ.
Thus,

Γα+1 = j(Γα) v j(Γδ) = Γδ+1 = Γβ

Then by (1) of the induction hypothesis, we see that Γα ∈ Guess. Thus by
Lemma 35, Γα v Γα+1, and so Γα v Γβ as required.

Suppose β is a limit ordinal. Then Γ+
β =

⋃
δ∈β Γ+

δ , so Γ+
α ⊆ Γ+

β . Similar for the
anti-extension. �

COROLLARY 37. Γ· : On→ Guess is a well-defined total function.

PROOF. By transfinite recursion. �

THEOREM 38. There is some countable α such that Γα = Γα+1.



Dra
ft

Onl
in

e v0
.7c ©

T
ob

y
M

ea
d
ow

s
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PROOF. First observe that |SentLT | = ω. The easiest way to see this is
by recalling that we have a method of coding every sentence by a natural
number. Thus there are at least as many natural numbers as sentences
of LT . It should also be clear that there is a term of LT for every natural
numbers. Putting this together we see that the cardinality of the sentences
of LT must be ω.

For a contradiction suppose that for α ∈ ℵ1, Γα+1 6= Γα. Then by Lemma 36,
we must have

Γ+
α+1 ) Γ+

α

and
Γ−α+1 ) Γ−α

for all α ∈ ℵ1. But this would mean that we could find an injection from the
ℵ1 into SentLT . But this gives us

ℵ1 ≤ |SentLT | = ω

which is impossible. �

REMARK. Intuiviely speaking, the idea of this proof there must be some α <
ω1 such that Γα = Γα+1 for at some countable point in the construction we
must run our of sentences to add.

DEFINITION 39. Let ΓsK be Γα for the least α such that Γα = Γα+1. Let αsK be
that ordinal.

PROPOSITION 40. ΓsK = j(ΓsK).

REMARK 41. ΓsK is known as a fixed point of the jump function j since when
we apply j to ΓsK it remains fixed.

THEOREM 42. For ϕ ∈ SentLT the following are equivalent:

(1) V alΓsK (Tpϕq) = 1;
(2) V alΓsK (ϕ) = 1; and
(3) ϕ ∈ Γ+

sK .

PROOF. (1↔3) By the definition of V al, we have

V alΓsK (Tpϕq) = 1 ⇔ ϕ ∈ Γ+
sK .
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(3→2) Observe that

ϕ ∈ Γ+
sK ⇔ ϕ ∈ j(ΓsK)+

⇔ V alΓsK (ϕ) = 1.

The first ⇔ is from Proposition 40 and the second is by definition of j. �

So this pretty good.

2.1.2.3. Examples.

EXAMPLE 43. Tp0 = 0q ∈ Γ+
sK.

We now want to look again at what happens to the liar sentence λ. However,
we need to make a little remark first. Since we’ve moved into a partial model,
we might wonder whether the diagonal lemma still works. It turns out that,
in the sense that we need, that it does still work.

LEMMA 44. Let ψ(v0) be any formula of LT , then there is some sentence γ such
that

V alΦ(γ) = V alΦ(ψpγq).

PROOF. Clearly for any r.e. function f : ω → ω, there will be a formula
ϕf (x, y) such that

f(m) = n ⇔ V alΓ(ϕf (m,n)) = >.

Thus the Sub predicate will do the usual thing.

The hitch comes in that the truth table for ↔ works as follows:
↔ 1 ∞ 0

1 1 ∞ 0

∞ ∞ ∞ ∞
0 0 ∞ 1

Let’s work through the standard argument and trace the blocking point.

Let β(x)↔d ∃y(Diag(x, y) ∧ ψ(y)).

Let b = pβ(x)q.

Let γ = β(b). Let g = pγq.

Then it is easy to see that:

V alΦ(∀y(y = g ↔ Sub(b, b, y)) = 1.

Moreover, it is clear that no undefined values will be involved here.
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We then try to proceed by claiming that:

V alΦ(γ ↔ γ) = 1.

However, since we are in strong Kleene there is no guarantee that this will
be the case. In those cases where it does hold, the usual proof suffices.

So we have another case to deal with; i.e., where

V alΦ(γ ↔ γ) =∞.

This tell us that V alΓ(G) = ∞. Now unpacking the definition of G we then
see that

V alΦ(∃y(Diag(b, y) ∧ ψ(y))) =∞.

But we already know that V alΦ(Diag(b, g)) = 1 (it’s just a simple syntax cal-
culation).

But then we see that V alΦ(ψ(g)) =∞, as required.

Thus, we see that for any formula ψ(x), there is some γ such that

V alΦ(ψpγq)) = V alΦ(γ).

�

REMARK 45. So we use exactly the same syntactic technique to get our liar
sentence, it just has slightly different properties in the partial semantics.

LEMMA 46. λ /∈ Γ+
sK ∪ Γ−sK.

PROOF. Suppose for a contradiction that λ ∈ Γ+
sK. But then

λ ∈ Γ+
sK ⇔ λ ∈ j(ΓsK)+

⇔ V alΓsK (λ) = 1

⇔ V alΓsK (¬Tpλq) = 1

⇔ V alΓsK (Tpλq) = 0

⇔ λ ∈ Γ−sK

which contradicts (i) of Lemma 36. A similar argument shows λ /∈ Γ−sK. �

Let app be the primitive recursive function which behaves as follows:

• app(0) = p0 = 0q;
• app(n+ 1) = Tapp(n).
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Since there is a obvious set of instructions for computing this function, we
know that it can be represented by a formula of LAr.

EXAMPLE 47. ∀n T app(n) ∈ Γ+
sK.

2.1.2.4. Limitations. The T-schema is not true in our intended model:
i.e.,

LEMMA 48. V alΓsK (ϕ↔ Tpϕq) 6= 1 for some ϕ ∈ SentLT .

PROOF. Let λ be a liar sentence. Then by definition of λ we have

V alΓsK (λ) = V alΓsK (¬Tpλq).

Moreover, by Theorem 42, we have

V alΓsK (λ) = V alΓsK (Tpλq).

Thus
V alΓsK (¬Tpλq) = V alΓsK (Tpλq)

and so V alΓsK (λ) = V alΓsK (Tpλq) =∞ and this means that

V alΓsK (λ↔ Tpλq) =∞.

Thus,
V alΓsK (λ↔ Tpλq) =∞.

�

The conditional in strong Kleene logic is too weak for this.

2.1.3. Revision theory. What would happen if we used the jump func-
tion on a guess that was exhaustive.

• Belnap and Gupta

2.2. Contemporary research in formal theories of truth

There are three main projects:

(1) Semantic theories of truth;
(2) Axiomatic theories of truth; and
(3) Logics of truth.
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2.2.1. Semantic theories of truth.

• Given a particular model or world, which sentences are true? [Kripke,
1975, Leitgeb, 2005, Gupta and Belnap, 1993]

2.2.2. Axiomatic theories of truth.

• What is the best theory of truth? [Halbach, 2011, Cantini, 1990,
Halbach and Horsten, 2006]

2.2.3. Logics of truth.

• How should we reason about truth? [Kremer, 1988, Beall, 2009,
Priest, 1979, Ripley, Forthcoming]

2.3. Consistency & non-triviality

2.3.1. KF .

2.3.1.1. The theory KF .

DEFINITION. (15.2) The theory KF is given by the axioms of PA with induc-
tion revised to accommodate sentences involving the truth predicate and the
following axioms:

(KF1) ∀s∀t(T (s=̇t)↔ so = to)

(KF2) ∀s∀t(T (s ˙6=t)↔ so 6= to)

(KF3) ∀x(SentT (x)→ (T (¬̇¬̇x)↔ Tx))

(KF4) ∀x(SentT (x∧̇y)→ (T (x∧̇y)↔ Tx ∧ Ty))

(KF5) ∀x(SentT (x∧̇y)→ (T ¬̇(x∧̇y)↔ T (¬̇x) ∨ T (¬ẏ)))

(KF8) ∀v∀x(SentT (∀̇vx)→ (T (∀̇vx)↔ ∀t T (x(t/v)))

(KF9) ∀v∀x(SentT (∀̇vx)→ (T (∀̇vx)↔ ∃t T (¬̇x(t/v)))

(KF12) ∀t(T (Ṫ t)↔ Tto)

(KF13) ∀t(T ¬̇Ṫ t↔ (T ¬̇to ∨ ¬SentT (to)))

REMARK. In the above definition we write so to denote the value of the term
s. This function can quite easily be seen to be primitive recursive. Thus,
it can be represented by a (Σ0

1) arithmetic formula. To take an example, let
t = 6543 and that in our coding system 6543 represents the term ‘5 + 4’. Then
to = 9.
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2.3.1.2. Closed off theories.

FACT 49. For all ϕ ∈ SentLT , ϕ ∈ Γ+
sK iff (¬ϕ) ∈ Γ−sK.

So we can just get by with an extension for the truth predicate and revise
the definitions above accordingly.

However, the T-schema is not true in our intended model: i.e.,

V alΓsK (ϕ↔ Tpϕq) =∞.

FACT 50. (i) λ /∈ ΓsK; (ii) but 〈N,ΓsK〉 |= λ.

PROOF. (i) Suppose there is some α such that λ ∈ Γα.

Then V alΓα(¬Tpλq) = V alΓα(λ) = 0, so λ /∈ j(Γα) = Γα+1: contradicting non-
strict increasingness. �

2.3.1.3. The consistency of KF .

THEOREM 51. Let M be the standard model of arithmetic N, expanded with
an interpretation for T which is the extension of the truth predicate given by
the minimal fixed point of the strong Kleene evaluation scheme. Then

M |= KF.

PROOF. So we let Γ+
sK be the extension of the truth predicate in a classical

model.

We show that each axiom of KF is true inM.

SinceM is an expansion of N, it is clear thatM |= PA.

(KF1) ∀s∀t(Tps = tq↔ s = t) SupposeM |= s = t. Then (s = t) ∈ Γ+
0 ⊆ Γ+

sK.

(KF2) ∀s∀t(T (ps 6= tq)↔ s 6= t) Similar.

(KF3) SentLT (x) → (T (p¬¬qax) ↔ Tx) Suppose x = pϕq ∈ SentL. Suppose
M |= Tpϕq. Then ϕ ∈ Γ+

sK. Thus V alΓsK (ϕ) = 1 and so V alΓsK (¬¬ϕ) = 1 giving
us that (¬¬ϕ) ∈ ΓsK and soM |= Tp¬¬ϕq.

(KF4) SentLT (xap∧qay)→ (T (xap∧qay)↔ Tx ∧ Ty)) Similar.

(KF5) ∀x(SentT (x∧̇y)→ (T ¬̇(x∧̇y)↔ T (¬̇x) ∨ T (¬ẏ))) Similar.

(KF8) ∀v∀x(SentT (∀̇vx)→ (T (∀̇vx)↔ ∀t T (x(t/v))) Similar.

(KF9) ∀v∀x(SentT (∀̇vx)→ (T (∀̇vx)↔ ∃t T (¬̇x(t/v))) Similar.
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(KF12) ∀t(T (Ṫ t) ↔ Tto) Only sentences can be in the extension of the truth
predicate so let t = pϕq. Then

M |= Tpϕq ⇔ V alΓsK (Tpϕq) = 1

⇔ V alΓsK (TpTpϕqq) = 1

⇔ M |= TpTpϕqq.

(KF13) ∀t(T ¬̇Ṫ t↔ (T ¬̇to ∨ ¬SentT (to))). We see that

M |= Tp¬Txq ⇔ V alΓsK (Tp¬Txq) = 1

⇔ V alΓsK (¬Tx) = 1

⇔ V alΓsK (Tx) = 0

⇔ x /∈ SentLT ∨ (x = pϕq ∧ ϕ ∈ Γ−sK)

⇔ x /∈ SentLT ∨ (x = pϕq ∧ V alΓsK (¬ϕ) = 1)

⇔ x /∈ SentLT ∨ (x = pϕq ∧ V alΓsK (Tp¬ϕq) = 1)

⇔ x /∈ SentLT ∨M |= Tp¬qax.

�

COROLLARY 52. KF is consistent

2.3.2. LP .

2.3.3. Other approaches - Field, Weber, Brady.



Dra
ft

Onl
in

e v0
.7c ©

T
ob

y
M

ea
d
ow

s

Bibliography

Jody Azzouni. The strengthened liar, the expresssive strength of natural
languages and regimentation. The Philosophical Forum, 34:329.

Jody Azzouni. The inconsistency of natural languages: How we live with it.
Inquiry, 50(6):590–605, 2007.

JC Beall. Spandrels of Truth. Oxford University Press, 2009.
Andrea Cantini. A theory of truth arithmetically equivalent to ID1

1. The
Journal of Symbolic Logic, 55(1):244–259, 1990.

Matti Eklund. Inconsistent langugages. Philosophy and Phenomenological
Research, 64(2):251–275, 2002.

Solomon Feferman. Reflecting on incompleteness. Journal of Symbolic Logic,
56(1):1–49, 1991.

Anil Gupta and Nuel Belnap. The Revision Theory of Truth. MIT Press,
Cambridge, 1993.

Volker Halbach. Axiomatic Theories of Truth. Cambridge University Press,
London, 2011.

Volker Halbach and Leon Horsten. Axiomatizing kripke’s theory of truth.
Journal of Symbolic Logic, 71:677–712, 2006.

David Kaplan. On the logic of demonstratives. The Journal of Philosophical
Logic, 8:81–98, 1978.

David Kaplan. Demonstratives. In Themes from David Kaplan. OUP, Oxford,
1989.

Michael Kremer. Kripke and the logic of truth. The Journal of Philosophical
Logic, 17(3):225–278, 1988.

Saul Kripke. Outline of a theory of truth. Journal of Philosophy, 72:690–716,
1975.

Hannes Leitgeb. What truth depends on. The Journal of Philosophical Logic,
34:155–192, 2005.

Doug Patterson. Tarski, the liar and inconsistent languages. The Monist, 89,
2006.

44



Dra
ft

Onl
in

e v0
.7c ©

T
ob

y
M

ea
d
ow

s
Bibliography 45

Graham Priest. The logic of paradox. Journal of Philosophical Logic, 8:219–
241, 1979.

Graham Priest. An Introduction to Non-Classical Logic: From If to Is. Cam-
bridge University Press, Melbourne, 2008.

W. V. Quine. Definition of substitution. In Selected Logic Papers. Harvard
University Press, Cambridge, 1996.

Dave Ripley. Conservatively exending classical logic with transparent truth.
The Review of Symbolic Logic, Forthcoming.

Ludwig Wittgenstein. Tractatus Logico-Philosophicus. Routledge, New York,
2001.


	Chapter 1. om liar sentences to Kripke's construction
	1.1. The Liar Paradox
	1.2. Getting formal
	1.3. What should we do?
	1.4. Tarski's solution

	Chapter 2. Kripke's construction, its cousins & what you can do with them
	2.1. Kripke's solution
	2.2. Contemporary research in formal theories of truth
	2.3. Consistency & non-triviality

	Bibliography

