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1. Three desiderata for rational credence

Coherence Rational credences should be coherent
Learning Rational credences should allow learning on the basis of ev-

idence
Invariance Rational credences should be insensitive to irrelevant dif-

ferences in the presentation of the epistemic situation

1.1. Coherence

Two-sided betting

• A bet that wins 1 − x if A is true, and loses x if A is false is
acceptable if pr(A) > x.
• If the above bet is not acceptable then a bet that loses 1− y if
A and wins y otherwise is acceptable for any y > x.

Call a bet of this form – “win 1− x if A, lose x otherwise” – a “unit bet
on A (with betting quotient x)”. The bet in the second clause here is a
unit bet on ¬A with betting quotient 1− y.

de Finetti coherence

Your prices for gambles in a two-sided betting scenario should be
such that no combination of acceptable bets is guaranteed to yield
a loss in every state.

Probability function

For a space of possibilities Ω, and a boolean algebra of propositions
over Ω, B(Ω), pr : B(Ω)→ [0, 1] is a probability function if:
• pr(Ω) = 1
• If X,Y are mutually exclusive then pr(X ∨ Y ) ≥ pr(X) + pr(Y )
• If X,Y are mutually exclusive then pr(X ∨ Y ) ≤ pr(X) + pr(Y )

Your betting quotients are de Finetti-coherent iff they are derived from
a probability function (de Finetti 1964).

1.2. Learning

Let pr and pr′ be your credences before and after learning that E is
true and nothing else. Beyond requiring that pr and pr′ are separately
coherent, we should want them to be jointly coherent. This means:

Conditionalisation

pr′(X) = pr(X|E) = pr(XE)
pr(E)

Learning about coin flips

• H1, H2, . . . are random variables encoding the outcome of
tosses of a mystery coin
• Hi = 1 if the coin landed heads, 0 otherwise
• Let Sn =

∑
Hi be the number of heads in n tosses

• The event of interest is that the next coin toss lands heads H
• Define a probability function by pr(H) = µ

µ+ν for µ, ν > 0

• And pr(H|Sn = h) = µ+h
µ+ν+n

Call these pr beta distributions.1 By the law of large numbers, as
n increases the ratio Sn

n will tend to the true chance, and as n gets
larger, µ+Sn

µ+ν+n gets closer to Sn
n . So each beta pr can learn. This is a

good situation to be in.
Let En be the total evidence up to time n. And let pr∗ be the “perfect”

credence, whatever that is (the chance function?).

Almost sure correctness in the limit

With probability 1, in the limit as n→∞, pr(H|En) = pr∗(H)

Note that this correctness is relative to a particular kind of proposition
to be learned: in this case, the event of the next toss landing heads.

1Strictly speaking pr is the expectation of a beta distribution.
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Figure 1: A beta distribution learns

1.3. Invariance

Consider a further kind of principle, “Principles of Indifference”: un-
less you have a good reason for treating them differently, you should
treat any two propositions the same.

Transformations

A transformation is a function T : Ω → Ω that induces a trans-
formation on B(Ω) through T (A) = {T (ω) : ω ∈ A} for all A ∈ B(Ω),
and induces a transformation on the probability functions defined
over B(Ω) by T (pr)(A) = pr(T (A)).

Precise invariance

A probability function pr is invariant under a collection of trans-
formations T iff T (pr(A)) = pr(A) for all A ∈ B(Ω) and T ∈ T .

Explicit invariance You have positive reason to treat A and t(A) the
same

Norm invariance In the absence of evidence to the contrary, the norms
will treat A and t(A) the same

Default invariance In the absence of evidence to the contrary, you
ought to treat A and t(A) the same

Call invariance with respect to the set of all transformations “universal
precise invariance”.

Impossibility I

No de Finetti-coherent credence satisfies universal precise invari-
ance.

Possible responses:
• Go permissivist: deny default invariance, accept that you can ar-
bitrarily break (norm invariance) symmetries
• Weaken invariance: (Paris and Vencovská 2015; Williamson 2010)
• Weaken coherence: this talk

2. Imprecise Probabilities

Credal sets and lower probabilities

Define:
• P, a set of prior probabilities with a common algebra of events.
We shall call this a credal set.
• P(X) = {pr(X),pr ∈ P}, the set-valued function defined over
the same algebra as the members of P.
• P(X) = supP(X), the “upper probability”.
• P(X) = inf P(X), the “lower probability”.

2.1. Walley coherence

Is P de Finetti coherent? No: Since P is only superadditive, you might
have P(A) = P(¬A) ≤ x < y < 1

2 . But if you’re forced to accept the other
sides of both bets for any price greater than x, you’ve paid 2(1− y) > 1
for two bets that guarantee you winnings of 1.
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One-sided betting

• A bet that wins 1 − x if A is true, and loses x if A is false is
acceptable if pr(A) > x.

And on the basis of this constraint, we define some coherence require-
ments.

Avoid Sure Loss

Your prices for gambles in a one-sided betting scenario should be
such that no combination of acceptable bets is guaranteed to yield
a loss in every state.

Walley coherence

Your prices for gambles in a one-sided betting scenario should be
such that no combination of acceptable bets is guaranteed to yield
a loss in every state and every combination of bets that yield a gain
in every state is acceptable.

Your betting quotients are Walley coherent iff they are the lower prob-
ability for some credal set (Troffaes and de Cooman 2014, Theo-
rem 4.38).

2.2. Invariance weak and strong

A transformation of Ω induces a transformation on a credal set point-
wise: T (P) = {T (pr) : pr ∈ P}. This allows us to make a distinction
between two kinds of invariance (de Cooman and Miranda 2007).

Weak Invariance

P is weakly T -invariant iff T (P) ⊆ P for all T ∈ T ,pr ∈ P.

Strong Invariance

P is strongly T -invariant iff T (pr) = pr for all T ∈ T ,pr ∈ P.

As above, call (weak,strong) invariance with respect to the set of all
transformations “universal (weak, strong) invariance”.

Impossibility II

NoWalley-coherent credence function satisfies universal strong in-
variance.

Vacuous prior

Let V be the set of all probability functions over the algebra of
events.

Possibility I

The only Walley-coherent credence function that satisfies univer-
sal weak invariance is the vacuous prior.

2.3. Belief Inertia

Define a conditional credal set: P(−|E) = {pr(−|E),pr ∈ P,pr(E) >
0}, the set obtained by conditioning each member of P on the same
evidence. The vacuous prior V cannot learn.

Anti-inductive priors

• pr(h1 ∧ h2) = pr(t1 ∧ t2) = ε
2

• pr(h1 ∧ t2) = pr(t1 ∧ h2) = 1−ε
2

• pr(h1) = pr(h2) = 1
2

• pr(h2|h1) = ε

If you’re accommodating inductive sceptics, you can’t expect to learn!
So Universal Weak Invariance is too much invariance.
Let B be the set of all beta distributions. This set of priors isn’t

vacuous, but it is “near-ignorance”.

Near ignorance
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P is near ignorance for H if, for all H ∈ H, (0, 1) ⊆ P(H).

Suppose we’ve gathered evidence Sn = h. B(H|Sn = h) = (0, 1) even
though every pr ∈ B satisfies ASCL. So what property learning-related
property is B failing to satisfy?

Informativeness for H

With probability one, P(H|En)−P(H|En) ≤ δH(n) for some function
δH such that for all n > n0, δH(n) < 1.

Strong Informativeness for H

With probability one, P(H|En)−P(H|En) ≤ δH(n) for some function
δH such that δH(n)→ 0 as n→∞.

Impossibility III

No Walley-coherent credence function satisfies universal weak in-
variance and informativeness.

3. Learning by ignoring the stubborn

Alternative parametrisation
• φ = µ+ ν
• µ′ = µ

φ and ν ′ = ν
φ

Therefore:
• µ′ + ν ′ = 1
• pr(H) = µ′

µ′+ν′ ,
• φ governs how “quickly” the distribution learns

After learning Sn = h:
• φnew = φ+ n
• µ′new = h+φµ′

n+φ

Figure 2: The alternative parametrisation, holding φ fixed
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Figure 3: The alternative parametrisation, holding µ′ fixed

Therefore:

B(H|Sn = h) =
Sn
n+ φ

B(H|Sn = h) =
Sn + φ

n+ φ

So solve belief inertia by setting an upper bound on φ. Bφ satisfies
strong informativeness for any φ < ∞. Call this model IDM (Walley
1996).

Exchangeability

P should be strongly invariant to permutations of the indices for
the coin-toss propositions H1, H2, . . . ,Hn.

Representation insensitivity

P should be weakly invariant to swapping eachHi with Ti, and also
to splitting up of one of the categories.

Impossibility IV

No de Finetti-coherent credence satisfies Representation Insensi-
tivity.

Possibility II

IDM priors satisfy Walley-coherence, Representation Insensitivity,
Exchangeability and Strong Informativeness.

See de Cooman, De Bock, and Diniz (2015), Theorems 21 and 4.

4. Learning by ignoring the most wrong

IDM relies on the evidence (and the data-generating process) having a
certain structure. Lots of inference problems don’t have that structure.
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Figure 4: Alpha cut learning

α-cut conditioning

• P(X|QE) = {pr(X|E);pr ∈ Q ⊆ P}
• Q = {pr ∈ P,pr(E) ≥ αP(E)}, for α ∈ (0, 1)

In Figure 4 the grey lines represent GC;2 the red lines α-cut; the
blue lines are Bφ(H|Sn) and Bφ(H|Sn) for an IDM prior. If we graph
B(H|αSn) − B(H|αSn) as n grows (Figure 5), we see that it appears to
shrink at a rate of about 1√

n
. The prior satisfies the same invariance

as IDM. The conditional model probably doesn’t.
B and B(−|αE) are each separately coherent, however, sometimes

they are not jointly coherent, nor even jointly avoid sure loss.

Sure loss for α-cut

Lottery A is a fair lottery with n tickets. You know nothing about
lottery B, except that it also has n tickets so you have a near-
ignorance prior for outcomes from lottery B. I’m going to flip a fair
coin to decide whether to draw a lottery A ticket (heads) or a lottery

2i.e. Q = {pr(E) > 0}

Figure 5: Spread of pr(H)

B ticket (tails). Before I flip the coin, I’ll offer you a bet at even odds
that the coin lands heads. I’m then going to tell you the outcome
of the draw from the urn. I then offer you a bet against heads
at worse than even odds. (Pay 1 − 1

2nα to win 1 if tails). Unless
α is small enough (i.e. less than 1

n ), these bets lose you money,
whichever outcome I announce.3

Can you always avoid sure loss by making α small enough? Open
question, but my guess is that you probably can for finite partitions at
least. It would also be interesting to explore how incoherent α-cut con-
ditioning is (Schervish, Seidenfeld, and Kadane 1997; Staffel 2020).

5. Conclusion

A rough summary:
Arbitrary precise prior Excellent coherence, Mixed (?) learning, Poor

invariance
Precise beta prior Excellent coherence, Good learning, Poor invari-

ance
3Thanks to Marco Cattaneo for this example.
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Pure inductive logic Excellent coherence, Good learning, Moderate
invariance

Vacuous prior Good coherence, Zero learning, Excellent invariance
IDM Good coherence, Good learning, Good invariance
α-cut Moderate coherence, Mixed (?) learning, Mixed (?) invariance
It’s striking how difficult it is to do justice to these three kinds of

desiderata for rational credence. This paper contributes to recognising
this deep and enduring tension in mathematical models of rational
belief and inference.

A. Iterating α-cut

• Qα[E,P] = {pr ∈ P,pr(E) ≥ αP(E)}
• PαE = P(−|αE) = {pr(−|E),pr ∈ P,pr(E) ≥ αP(E)}

When you then learn F , after already having learned E what do you
do?
• P(−|αEF ) (total evidence update, down and right on Figure 6)
• PαE(−|αF ) (iterative update, down and left on Figure 6)

Qα[E,P] P Qα[EF,P]

Qα[F,PαE ] PαE = P(−|αE) P(−|E)

PαE(−|αF ) PαE(−|F ) P(−|EF ) P(−|αEF )

|E |E

|EF

⊆ ⊇

|F|F|F

⊆

⊆ ⊇

⊆

⊆

|αE

|αF

|αEF

Figure 6: α-cut conditioning as GC plus restriction
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