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I. Metainduction - Basic Account: New Solution to the Problem of Induction? 

(Mo 10.8. 10.00-11.00)           Gerhard Schurz  (DCLPS, HHU Düsseldorf) 

                    

1. Introduction: The Problem of Induction   

 

Hume's problem: How can we rationally justify the inductive transfer of patters or regular-

ities from past observations to the unobserved future? 

Hume's insight: we cannot demonstrate the success (reliability) of induction (I), because all 

conceivable strategies of justification seem to fail: 

 I cannot be justified by logic, because it is logically possible that future    past. 

 I cannot be justified by observation, because I's conclusions are about the unobserved. 

 the only remaining possibility would be to justify I by induction from its past success, but 

this would either amount to an infinite regress (higher-order inductions) or to a circle. 
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● Contrary to claims of several epistemologists (Black 1974, van Cleve 1984, Papineau 

1993, ch. 5; Goldman 1999, 85; Lipton 1991, 167ff.; Harman 1986, 33; Psillos 1999, 82): 

 (Rule-)  Circular justifications are epistemically worthless, because with their help one may 

'justify' opposite conclusions (Salmon 1957): 

Inductive Just. of I:             Anti-Inductive Just. of Anti-I : 

Past inductions were successful       Past anti-inductions were not successful  

[Therefore by the rule of induction:]      [Therefore by the rule of anti-induction:] 

Future inductions will be successful    Future anti-inductions will be successful 

 

Similar refutation strategy are possible in other cases:  

 Rule-circular 'justification' of inference to the best explanation (IBE): The assumption 

that IBEs are reliable is the best (available) explanation of the fact that so far, most hypoth-

eses introduced by IBEs have been successful. Therefore, by the IBE rule: IBEs are reliable. 

 (Douven 2011): rule-circular justification of 'inference to the worst explanation'.  
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 Rule-circular 'justification' of  the inference to authority, IA ("If the authority A tells that 

p, infer that p is true"): A tells that the rule IA is reliable. Therefore rule IA is reliable. 

 Refutation by inference to the opposite authority. 

 

● If we attempt to justify scientific theories, or real experts, by their explanatory and pre-

dictive success, we basically need a justification  of induction  

Is a (non-circular) justification of induction impossible (as many epistemologists think)? 

The practical significance of this question: if we cannot justify induction, what reason do 

we have to prefer science over religion 
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2. Hume's Problem Within Bayesianism 

 

In Bayesianism Hume‘s problem is not immediately apparent. But it is there:  

 

● If one assumes a state-uniform distribution  a uniform prior distribution over possible 

worlds (say, binary event sequences) , then induction becomes impossible:  

P(Fan+1 | freqn (F) = k/n) = ½  for all kn  |N  (Carnap 1956; c†). 

Wolpert's no-free-lunch theorem (1996) is a generalization of this result (Schurz 2017). 

● On the other hand: if one assumes a frequency-uniform distribution  a uniform prior 

distribution over possible frequencies of binary events  then one obtains Laplacean induc-

tion rule: P(Fan+1 | freqn (F) = k/n) = (k+1)/(n+2)               for all kn  |N. 

 

Which prior is the 'right' one? Moral: all priors are biased in some respect. 
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Transformation of prior distributions: 

Uniform P-density over        Corresponding "maximally dogmatic"   Outwashing of this prior 

possible sequences (binary coding)      P-density over possible frequencies   is impossible! 

 

1 

 

 

   0        1                 0            1/2         1 

                            

Uniform P-density over   Corresponding "inductive" P-density 

possible frequencies    over algorithmic complexity of sequences 

1          (Solomonoff 1964) 
 

          P(s)  ~  1/(2c(s) 

 

  0        1               c       

A justification of induction is needed that is independent from an assumed prior. 

Is this possible?  
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3. Optimality Justifications – an Escape? 

 

Schurz (2008, , 2019): New approach to Hume's problem based on meta-induction.  

Distinction:  Object-induction (level of events) vs. meta-induction (level of methods). 

 

The approach is compatible with Hume's diagnosis that one cannot demonstrate the relia-

bility of induction.  

It attempts to show something weaker: the optimality of induction 

 in all possible worlds (including paranormal worlds hosting clairvoyants, anti-induc-

tivistic demons; since otherwise account would be circular) 

 among all methods that are accessible to the epistemic agent ('access-optimal'). 

Two crucial features: 

● Shift to optimality: in induction-hostile worlds, induction may be "best of a bad lot". 

● Shift to meta-induction (MI) and optimality among accessible methods. 
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General characterization of "meta-induction": 

A meta-inductive method favors prediction methods according to their observed success and 

attempts to predict an optimal combination of their predictions. 

Imitate the best, ITB: the simplest meta-inductive method. 

Weighted MI methods: weigh predictions of methods according to observed success. 

 

Optimality account is related to Hans Reichenbach's "best alternative" account (1949).  

● Problem of Reichenbach's account: focused on object-induction. Result in formal learn-

ing theory show: impossible to establish optimality w.r.t. all object-level methods.  

Given method M  construct M-demonic world w  constr. w-perfect method M*  

M* better than M in w (Putnam 1965, Kelly 1996; Skyrms 1975 against Reichenbach). 

 

● But optimality may be possible for MI methods w.r.t. all accessible methods. 

Here the last step is no longer valid, because MI would imitate M*. 
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Is the restriction to accessible methods a drawback? 

No, since inaccessible methods are epistemically irrelevant. 

 

On the relation between meta- and object-induction: 

●  If the universal access-optimality of a particular MI-method could be demonstrated, this 

would provide an a priori justification only of meta-induction (not of object-induction). 

 

●  However: the a priori justification of meta-induction implies the following a posteriori 

justification of object-induction:  

So far object-inductive methods were (much) more successful* than non-inductive methods 

of prediction; therefore it is meta-inductively justified to favor object-induction in the future.  

 This argument is not circular, because of the independent justification of meta-induction. 

*Precisely: Until now, ind. methods were often significantly more successful than non-ind. 

methods, but not vice versa (compatible with fact that sometimes no method is successful). 
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4. Prediction Games     (for the following see Schurz 2019)   

  

A (real-valued) prediction game consists of: 

(1) An infinite sequence (e) = (e1, e2,) of real-valued events ei  VAL  [0,1] (normalized)   

(2) A (finite) set of 'players'  whose task is to predict next (future) events. 

 predn(P)[0,1]: prediction of P for time (round) n, delivered at time n1.   

Important: Players may predict mixtures of events.  Even if events are binary (VAL = 

{0,1}), predictions may be real-valued. Application: Probabilistic predictions. 

 Players in  include  (2.1): one or several meta-inductivists 'xMI'  (x = type of MI), 

(2.2) a (finite) set of other players P1,,Pm (the non-MI-players): either object-inductivists, 

or alternative players (e.g., clairvoyants who may have perfect success).  

 

We identify players with prediction methods.   
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Success evaluation:  Normalized loss function  loss(predn,en)  [0,1]. 

Natural loss |enpredn|. Our theorems admit many other functions, e.g. convex ones.  

score s(predn,en) := 1  loss(predn,en)  

absolute success: Sucn(P) := P's sum of scores until time n 

relative success (success rate) sucn(P) := Sucn(P) / n. 

absolute attractivity of P for xMI (regret of xMI wr.t. P):  Atn(P) := Sucn(P)  Sucn(xMI) 

relative attractivity (attr. rate):  atn(P) := Atn(P) / n  

 

Theorem 1  major result about ITB: ITB is only access-optimal in environments with 

success rates converging to a stable ordering; they must not oscillate forever.  

 

ITB may be deceived by players whose success goes down as soon as they are favored by 

ITB  this leads to success-oscillations of players modulo the switching threshold  of ITB.  
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Example: stock market in  a bubble economy.   Programming (by Paul Thorn):  

if ITB favors a deceiving player P, P predicts incorrectly, else correctly. 

 

 

 

 

 

 

 

 

●  The delay problem: observation of change of leader costs time (one score unit). 

Theorem 2: No one-favorite MI method can be universally access-optimal. 

Conclusion: Optimality can only be found in the class of success-weighted MIs. 

But not all success-dependent weightings will do.  
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5. Attractivity-Weighted Meta-Induction  

 

Predictions of weighted meta-induction wMI: 

For all times n>1 with 1 i m ( )n iw P   > 0:  predn+1(wMI) =  1 i m

1 i m

 ( ) ( )n n 1i i

  ( )n i

w P pred P

w P
 

 

 


 . 

(If n=0 or 1 i m
( )n iw P

  = 0, wMI predicts by its 'fallback-method'.) 

Attractivity-weighting:  Simple a.w. meta-inductivist AW:   wn(P) = max(atn(P),0). 

Exponential a.w. meta-inductivist EAW:  wn(P) := enatn(P)  where  = 8 ln(m)/(n 1)  . 

  

Crucial: a.w. MI forgets players whose regret is negative. 

Note: AW forgets immediately; EAW forgets gradually. 

 

There are further variants of AW: e.g. polynomial AW (  
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Universal Optimality Results (long-run; based on Cesa-Bianchi and Lugosi 2006, Schurz 

2008, 2019; cf. Shalev-Shwartz and Ben-David 2014, "online learning under expert ad-

vice"): 

 

Theorem 3: Universal long-run access-optimality of (E)AW with tight upper-bounds for 

short-run losses 

For every prediction game ((e), {P1,,Pm, xAW}) whose loss-function is convex in the ar-

gument predn, the following holds for all n1: 

(1) For AW  short-run:maxsucn  sucn(AW)   m
n

.      

(2) For EAW  short-run:maxsucn  sucn(EAW)   1.78 2 ln(m)/n .      

(3) Thus for AW and EAW  long-run: limsupn (maxsucn  sucn(EAW))  0.   
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 Round (logarithmic scale) 

 

Two crucial features: (1.) (E)AW cannot be deceived by adversarial players, because if 

they oscillate in their success-rates, (E)AW predicts the average of their predictions.  

Programming:  
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(2.) Difference between attractivity-weighting and success-weighting ('Franklin's rule', cf. 

Gigerenzer et al. 1999, part III; Jekel et al. 2012, etc.) 

Success-weighted MI (SW) does not forget players that are less successful than the MI. 

Thus, its success cannot converge to the maximal success.  SW cannot be access-optimal.  

 

On the relation between (E)AW and ITB: 

In scenarios in which ITB is optimal (stable success ordering), (E)AW coverge to ITB in 

their behavior, with  a small delay. 

 

On the relation between AW and EAW (recent simulations with Paul Thorn): 

Over all possible sequences: EAW is better in avoiding large regrets than AW, while AW 

forgets faster and is better in avoiding regrets for regular sequences in which object-induc-

tion achieves high success. 
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II. Metainduction - Extensions of the account (Tue 11.8. 10:00 - 11:00) 

 

6. Discrete Prediction Games  

Mixtures of predictions are impossible or not allowed. Theorem 3 fails. 

predn  discrete event value space VAL = {v1,, vq} Binary games: VAL = {0,1} 

 

Theorem 4: No individual (MI) method can be universally optimal in discrete games. 

 

Proof: Take a binary game, an arbitary (MI) method M, an M-demonic event sequence (e), 

and the two methods 'Always-1' and 'Always-0'. 

Then at any time n, M's success rate is 0, while at least one of Always-1 and Always-0 has 

a succes rate   0.5. 
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Two methods of transferring theorem 3 to discrete games: 

 

(1.) Randomized a.w.MI  R(E)AW (Cesa-Bianchi and Lugosi  2006):  

Each time RAW predicts an event value vi VAL with a probability equal to the normalized 

weight-sum of all non-MI players predicting vi (with weights assigned as by AW).   

 

Theorem 5: For arbitrary loss functions: If RAW's choice of prediction is probabilistically 

independent from predicted event, then:  

maxsucn  nsuc (RAW)    the regret bound of AW, where nsuc  is the (cumulative) expected 

success rate. (Similarly for REAW.) 

 

Definition: nsuc  (RAW) =def (1/n) 1inExp(scorei(RAW)), where  

Exp(scorei(RAW)) =def 1rq P(predi(RAW)=vr)score(vr,ei)).     (Likewise for REAW) 



Gerhard Schurz      Meta-Induction       Summer School Bayesian Epistemology           MCMP  08 2020          18 18 

● Advantage: the result holds for arbitrary loss functions (because the expected loss of 

probabilistic predictions is always linear). 

● Strong disadvantage: the optimality of randomized MI excludes deceptive scenarious. 

 

(2.) Collective a.w.MI  CAW (Schurz 2008):  AW1,, AWk. 

Each time, a fraction ki/k of the k meta-inductivists predict the event value vi Val that 

approximates as close as possible RAW's probability of vi.  

  

Theorem 6: For arbitrary loss functions:  

maxsucn  nsuc (X)    (E)AW's regret bound + q-1 
k2

, where nsuc  is the average success.   

● Disadvantage: The additional loss term of  q-1 
k2

. (Can be made small by large k). 

● Strong advantage: The approximative optimality of collective MI is universal.  
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● Assuming the CAW's share their success, collective optimality guarantees optimality for 

every indidvual. Here a practical condition becomes directly epistemologically relevant:  

by epistemic cooperation,  the negative result of theorem 4 can be defeated. 

 

A programming:  

 

 

 

 

 

 

 

 

 

 

 

 

 

7. Unboundedly Growing Sets of Methods 

Blue: 10 adversarial players  
Black: AW  
Red: 10 binary CAWs, 
whose success converges 
to that of AW. 
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7. Unboundedly Growing Sets of Methods  

 

Challenge of Arnold (2010) and Sterkenburg (2018, 2019): Theorems are restricted to fixed 

finite sets of accessible methods.  

Defense: Humans' cognitive resources are finitely bounded.   

Successor problem (Sterkenburg): The set of 'candidate methods' cannot be fixed. We need 

meta-induction over unboundedly growing sets of methods:  

(n) = {P1,,Pm(n)}, where m(n) is monotonically growing.  

 

● The meta-inductivist attributes to all new players a hypothetical default success for past 

times of the game when they were absent.  

Otherwise a fair comparison is impossible: it may be that before the entrance time of a 

player P it was much harder to attain predictive success than after t.  

Which 'default success' should be attributed? 
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Solution: EAWattributes to a new player P the so-far success of him-/herself (Chernov and 

Vovk 2009).  

Epistemic advantage: fair. 

Technical advantage: makes transfer of theorems 3, 5,6 possible.  

 

Theorem 7: Access-optimality of EAWgr for growing player sets:  

Then for every prediction game ((e), {P1,,Pm(n), EAWgr}):  

(1) maxsucnsucn(EAWgr)   1.78 2 ln(m(n))/n   (the regret bound of EAW). 

(2) If m(n) grows slower than exponential with n (limn m(n)/en  = 0):  

  limn (maxsucnsucn(EAWgr))  0 

 (Similarly for REAW, CEAW.) 
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8. A Result for Goodman-type methods 

Assumption: a given language with qualitative primitive predicates (Goodman 1955). 

(Goodman's problem of language-relativity has to be solved independently) 

 A Goodman-method with k switch points is an arbitrary piecemeal combination of k+1 

 qualitatively defined basic methods:  

  P1,,P1,    P2,,P2     Pk+1,,Pk+1.  

         kth switch point 

1st switch point     2nd switch point 

 

Problem: We shouldn't include in the candidate set too many 'crazy' Goodman-methods. 

 

Theorem 8: There is variant of EAW (the 'fixed share' EAW) that tracks the success rates 

of the basic methods P1,,Pm, but is nevertheless access-optimal in regard to all Goodman-

type combinations of basic methods whose switch number k(n) grows sublinearly with n. 
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9. Further Generalizations and Applications 

 

9.1 Generalization to action games ("multi-armed bandits") 

 

9.2 Results about Dominance (long-run) 

There are several equally optimal MI methods (with different short-run properties). 

(1) (E)AW dominates every independent method and every meta-method that is not access-

optimal. 

(2) Not access-optimal meta-methods are: all one-favorite methods, success-weighted MI, 

linear regression with linear loss function, simply non-inductive meta-methods,  

 

● Reconciliation with the no free lunch theorem: state-uniform probability of infinite 

event sequences in which MI dominantes these methods is zero (Schurz 2017). 

 



Gerhard Schurz      Meta-Induction       Summer School Bayesian Epistemology           MCMP  08 2020          24 24 

 

9.3 Application to Bayesian epistemology: probabilistic prediction games - tomorrow. 

 

9.4 Outlook: Applications to Social Epistemology and Cultural Evolution  

 

● Meta-induction = success-based social learning. 

 

Schurz (2012): Local Meta-Induction in epistemic neighborhood structures: 

Here, success-information and meta-inductive learning is restricted to local neighborhood 

structues. 

Provided the neighborhoods are overlapping, expert knowledge spreads. 
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Color code: 

 0,95 < Success Rate 

 0,85 < SuccessRate  0,95 

  0,75 < SuccessRate  0,85 

      0,65 < SuccessRate  0,75 

  0,55 < SuccessRate  0,65 

  0,45 < SuccessRate  0,55 

 SuccessRate  0,45 

          Round 1    Round 5 

       

   

 

 

 

 

 

 

Round 10    Round 30    Round 100 

Figure 5: Local Meta-induction spreads reliable knowledge of 1% experts (white spots in round 1) 

among 99%  unreliable nonexperts (red area in round 1) within 100 rounds with 12 cycles per round. 

In round 200 everything has become white.  
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Rendell et al. (2010)   computer tournament: Social learners were much more successful 

than individual learners in the all-against-all tournament. But when social learners played 

against themselves, their success-rate went down (Roger's Paradox).           

Conclusion:  

(1.) Members of a successful research community should not only apply MI, but at the same 

time attempt to improve their independent methods (theories). 

(2.) Populations can only survive if they do not only consist of imitators/social learners; a 

possibly small fraction of independent learners is needed; otherwise extinction.  

 

Douven (forthcoming in BJPS): Optimality account has to be complemented by an expla-

nation why induction is not only optimal, but highly successful. 

He offers an explanation based on evolutionary programming of prediction games. Meta-

induction is indirectly implemented by evolutionary selection of successful predictors. 

   



Gerhard Schurz      Meta-Induction       Summer School Bayesian Epistemology           MCMP  08 2020          27 27 

III. Bayesian Prediction Games and Meta-inductive Probability Aggregation   

(Wed 12.8.10:00-11:00) 

  

The problem of choosing a prior distribution:  

For objective Bayesianism: Equiprobability is language-dependent.  

● Recall section 2: If one assumes a state-uniform distribution  a uniform prior distribu-

tion over possible worlds (say, binary event sequences) , then induction becomes impossi-

ble. 

● If one assumes a frequency-uniform distribution  a uniform prior distribution over pos-

sible frequencies of binary events  then one obtains the Laplacean induction rule. 

 

Moreover: uniform distributions are not preserved under fineness-preserving language 

transformations (cf. Gillies 2000, 37-48).  Example:  
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For subjective Bayesianism: Bayesian convergence theorems hold only for prior distribu-

tions that are non-dogmatic and (in the infinite case) continuous. 

 Thus: not all prior distributions can be outwashed by conditionalizing on increasing 

amounts of evidence. For example, the state-uniform distribution cannot be outwashed. 
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 Moral: An a priori justification of particular prior distributions is impossible (Hume's in-

sight).  All a priori choices contain a subjective element.  

 

Proposal: Use meta-induction to choose the optimal distribution function a posteriori. 

This determines the optimal 'prior' distribution post-facto. 

 

Recapitulation (from Monday): 

General characterization of "meta-induction": 

A meta-inductive method favors prediction methods according to their observed success 

rates and attempts to predict an optimal combination of their predictions. 

Imitate the best, ITB: is the simplest meta-inductive method, but not universlly optimal. 

Weighted MI methods: weigh predictions of methods according to observed success. 
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A (real-valued) prediction game consists of: 

(1) An infinite sequence (e) := (e1, e2,) of real-valued events en  VAL  [0,1].   

(2) A (finite) set of accessible methods ('players')  whose task is to predict next (future) 

events.    predn(P)[0,1]: prediction of P for time (round) n, delivered at time n1.   

Important: Players may predict mixtures of events.  Even if events are binary (VAL = 

{0,1}), predictions may be real-valued. Application: Probabilistic predictions. 

 Players in  include  (2.1): one or several meta-inductivists 'xMI'  (x = type of MI), 

(2.2) a (finite) set of other players P1,,Pm (the non-MI-players): either object-inductivists, 

or alternative players (e.g., clairvoyants who may have perfect success).  

 

 Success evaluation:  Normalized loss function  loss(predn,en)  [0,1]. 

Natural loss |enpredn|. Theorems admit many other loss functions, e.g. convex ones.  

score s(predn,en) := 1  loss(predn,en)  
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absolute success: Sucn(P) := P's sum of scores until time n 

relative success (success rate) sucn(P) := Sucn(P) / n. 

absolute attractivity of P for xMI (regret of xMI wr.t. P):  Atn(P) := Sucn(P)  Sucn(xMI) 

relative attractivity (attr. rate):  atn(P) := Atn(P) / n  

 

Predictions of weighted meta-induction wMI: 

For all times n>1 with 1 i m ( )n iw P   > 0:  predn+1(wMI) =  1 i m

1 i m

 ( ) ( )n n 1i i

  ( )n i

w P pred P

w P
 

 

 


 . 

Attractivity-weighting:  Simple a.w. meta-inductivist AW:   wn(P) = max(atn(P),0). 

Exponential a.w. meta-inductivist EAW:  wn(P) := enatn(P)  where  = 8 ln(m)/(n 1)  . 

 

Bayesian prediction games: 

Prediction games with binary or discrete event values Val = {v1,,vq} 

Predictions are probability distributions over Val ('Bayesian predictors). 
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 ● Question: When is it reasonable to predict the probability of event values for the 

purpose of maximizing predictive success?  Depends on the chosen scoring function. 

 

If the deviation of predicted probability of the actual event  from its truth-value (1) is scored 

by the absolute (linear) distance, then it is not optimal to predict probabilities, but to predict 

truth values: '1' for event value with maximal probability and '0' otherwise  ('maximum rule). 

Proof (binary case, p = IID event probability; pred = prediction):  

ppred + (1p)(1pred) is maximal if pred = 1 if p  0.5 and pred=0 otherwise. 

 

Note: From this one should not infer that linear scoring rules are less adequate (cf. Maher 

1990; Fallis 2007).  In my view, the result shows that under linear scoring the thesis that 

subjective probabilities are rational estimations of truth values is false.  

(Rather, they are rational estimations of objective probabilities.) 

Moral: The pro's and con's of certain scoring functions are context-dependent. 
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● A proper scoring rule: A scoring function that maximizes the P-expected score if one 

predicts P. 

 

Brier (1950): the quadratic loss function, loss(e,pred) = (epred)2, constitutes a proper scor-

ing rule. (cf. Selten 1998). 

Proof: By differentiating expected quadratic loss w.r.t. pred and setting it zero: 

d[p(1pred)2 + (1p)pred2]/dpred = d[p2ppred +pred2]/dpred = 2p+2pred  =! 0;  

hence pred = p. 

There are other proper scoring functions, e.g. logarithmic ones (Fallis 2007). 

 

Objective interpretation: Under proper scoring, a rational forecaster will attempt to predict 

degrees of belief that match the objective probabilities, because only then expected success 

coincides with average success.  
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A Bayesian prediction game is a real-valued prediction game ((e),{P1,,Pm, xMI} with 

discrete event values Val = {v1,,vq} and for all Pi (1im) and n  N: 

(i) Pi's prediction equals Pi's probability distribution over VAL conditional on past evidence: 

 predn+1(Pi) = (r1,,rq),  where:  rj = Pi,n(en+1=vj |e1,,en),  

 "e1,,en": the sequence of the past event values, "en+1=vj": the prediction that the next 

 event value will be vj,  and Pi,n  = the probability function of player Pi at time n. 

(ii) If en+1 = vk, then score(predn+1(Pi),en+1) = 1loss(rk,1),  where the loss function is proper:  

 For all P: Val[0,1] and predictions (s1,,sq) [0,1]q (with 1iq si = 1) 

  Expp(loss(s1,,sq)) =def 1iqP(e=vi)loss(si,1) is minimal iff si = ri for all i{1,,q}.  

 

Note: This scoring method is adopted in Cesa-Bianchi and Lugosi (2006, ch. 9), but con-

fined to logarithmic loss function. Brier's (1950) uses a more refined scoring method that 

adds the loss between the predicted probability and truth value for all event values. 
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Universal Optimality Result for (E)AW (based on Cesa-Bianchi and Lugosi 2006, Schurz 

2008, 2019, Shalev-Shwart and Ben-David 2014)  applied to Bayesian prediction games: 

 

Theorem 9: Optimality of AW-based probability aggregation: 

For every Bayesian prediction game ((e), {P1,,Pm, xAW}): 

(1) For AW  short-run:maxsucn  sucn(AW)   m
n

.      

(2) For EAW  short-run:maxsucn  sucn(EAW)   1.78 2 ln(m)/n .      

(3) For AW and EAW   long-run: limsupn (maxsucn  sucn(AW))  0. 

 

PAW,n is an aggregated conditional probability function, whose weights are meta-induc-

tively determined based on objective sucess rates (Feldbacher-Escamilla and Schurz 2020)  

( this may solve a problem of probability aggregations; cf. Mongin 2001). 
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From the aggregated conditional distribution PAW the optimal prior distribution over the 

events can be calculated from the predictive probabilities post-facto as follows,  

where (vi1,,vin) is a sequence of n event values at times 1,,n: 

PAW(vi1,vin) =   1tn PAW(vit| vi1,,vit)  (= PAW(vi1) PAW(vi2 | vi1)    ). 

 

Note: this prior is 'post facto' because the weights of the aggregated P-function depends on 

the success of the probabilistic predictors and thus on the actual events to be predicted. 

 

Final remark: With the logarithmic loss function Bayesian predictors attain an especially 

simple mathematical format:  

Logarithmic loss function: loss(Pi,n,en+1) = ln(Pi,n(en+1)).  In words: the loss of Pi's predic-

tion of en+1 is the negative logarithm of Pi's probability of the actual value of en+1.  
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● Disadvantage of logarithmic loss:  for P(e)0, loss(P,e), which is rather unnatural.  

● Advantage of logarithmic loss: improved regret bound of EAW: ln(m)/n. 

 

With the logarithmic loss function, EAW's weight rule can be transformed into a rule that 

bears a similarity with a Bayesian updating. One obtains: 

 w n
AWE (P) = eLossn(P) = e1tn ln P(et|et1)  = 1tnP(et|e

t1) = P(en)  

 (cf. Cesa-Bianchi and Lugosi 2006, 249; Sterkenburg 2018). 

 

Also in this case, the determination of weights and priors is post facto, since this equation 

holds only for the actual course of events en, which determines the weights (not for all 

possible courses of events). 
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Application to Data: Empirical Prediction Games  

(Schurz and Thorn 2016, Thorn and Schurz 2019) 

Monash University Footy Tipping Competition:  

Event-sequence: 1514 matches of the Australian Football League 2005-2012.  

1071 human predictors (a "short run" experiment) predicting the winning probability. 

Results: In 6 out of the 8 seasons, there was a different best player; but EAW and AW 

were always at the top (almost no difference between AW and EAW). 

 

Round Worst case regret of EAW  Obtained regret of (E)AW  

20   0.29           0.025 

100    0.13      0.026  

500     0.06      0.006 

1500     0.034     0.005 
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Results for 69 players predicting 50% of time (permanent evaluation)   

ITB 

AW 

corr. success-weighted MI 
success-weighted MI 
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Results for 50 players with best 'ecological validity', intermittent evaluation  
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