Hannes Leitgeb

LMU Munich

February 2012

Hannes Leitgeb (LMU Munich)

A Joint Theory of Belief and Probability

February 2012 1 / 24

Rational belief comes in a qualitative version—belief *simpliciter*—and in a quantitative one—*degrees* of belief.

These are subject to different standards of normativity.

Rational belief comes in a qualitative version—belief *simpliciter*—and in a quantitative one—*degrees* of belief.

These are subject to different standards of *normativity*.

And there does not seem to be any obvious reduction of one to the other:

• It is possible to believe in the truth of some propositions, without being *certain* of these propositions.

This rules out: Bel(X) iff P(X) = 1.

Rational belief comes in a qualitative version—belief *simpliciter*—and in a quantitative one—*degrees* of belief.

These are subject to different standards of *normativity*.

And there does not seem to be any obvious reduction of one to the other:

• It is possible to believe in the truth of some propositions, without being *certain* of these propositions.

This rules out: Bel(X) iff P(X) = 1.

• When we believe two hypotheses *A* and *B* to be true, *A* \land *B* does seem believable to be true for us (as all other of their *logical consequences*).

This seems to rule out the Lockean thesis $LT^{>r}_{\leftrightarrow}$: Bel(X) iff P(X) > r.

Rational belief comes in a qualitative version—belief *simpliciter*—and in a quantitative one—*degrees* of belief.

These are subject to different standards of *normativity*.

And there does not seem to be any obvious reduction of one to the other:

• It is possible to believe in the truth of some propositions, without being *certain* of these propositions.

This rules out: Bel(X) iff P(X) = 1.

• When we believe two hypotheses *A* and *B* to be true, *A*∧*B* does seem believable to be true for us (as all other of their *logical consequences*).

This seems to rule out the *Lockean thesis* $LT^{>r}_{\leftrightarrow}$: Bel(X) iff P(X) > r.

One reason why qualitative belief is so valuable is that it occupies a *more elementary* scale of measurement than quantitative belief.

So the really interesting question is:

Both qualitative and quantitative belief are concepts of belief. *How exactly do they relate to each other?*

So the really interesting question is:

Both qualitative and quantitative belief are concepts of belief. *How exactly do they relate to each other?*

Two different paths lead to one and the same answer:

- "←" of the Lockean Thesis and the Logic of Absolute Belief
- 2 " \rightarrow " of the Lockean Thesis and the Logic of Conditional Belief

cf. Skyrms (1977), (1980) on resiliency.

Snow (1998), Dubois et al. (1998) on big-stepped probabilities.

An answer is crucial, for how else can we reconcile *traditional* philosophy of science, epistemology, philosophy of language, and cognitive science with:

4/24

Let *W* be a set of possible worlds, and let \mathfrak{A} be an algebra of subsets of *W* (propositions) in which an agent is interested at a time.

We assume that \mathfrak{A} is closed under countable unions (σ -algebra).

Let *P* be an agent's degree-of-belief function at the time.

- P1 (Probability) $P : \mathfrak{A} \to [0, 1]$ is a probability measure on \mathfrak{A} . $P(Y|X) = \frac{P(Y \cap X)}{P(X)}$, when P(X) > 0.
- P2 (Countable Additivity) If $X_1, X_2, ..., X_n, ...$ are pairwise disjoint members of \mathfrak{A} , then

$$P(\bigcup_{n\in\mathbb{N}}X_n)=\sum_{n=1}^{\infty}P(X_n).$$

E.g., a probability measure *P*:

P conditionalized on C:

Hannes Leitgeb (LMU Munich)

- ∃ ►

Accordingly, let Bel express an agent's beliefs.

B1 (Logical Truth) Bel(W).

- B2 (One Premise Logical Closure) For all $Y, Z \in \mathfrak{A}$: If Bel(Y) and $Y \subseteq Z$, then Bel(Z).
- B3 (Finite Conjunction) For all $Y, Z \in \mathfrak{A}$: If Bel(Y) and Bel(Z), then $Bel(Y \cap Z)$.
- B4 (General Conjunction) For $\mathcal{Y} = \{Y \in \mathfrak{A} | Bel(Y)\}, \bigcap \mathcal{Y} \text{ is a member of } \mathfrak{A}, and Bel(\bigcap \mathcal{Y}).$

It follows: There is a strongest proposition B_W , such that Bel(Y) iff $Y \supseteq B_W$.

In order to spell out under what conditions these postulates are consistent with the " \leftarrow " of the Lockean thesis,

• LT
$$\stackrel{\geq r>rac{1}{2}}{\leftarrow}$$
: Bel (X) if $P(X) \geq r>rac{1}{2}$

1

we will need the following probabilistic concept:

In order to spell out under what conditions these postulates are consistent with the " \leftarrow " of the Lockean thesis,

• LT
$$\stackrel{\geq r > \frac{1}{2}}{\leftarrow}$$
: Bel(X) if P(X) \geq r > $\frac{1}{2}$

we will need the following probabilistic concept:

Definition

(*P*-Stability) For all $X \in \mathfrak{A}$:

X is *P*-stable^{*r*} iff for all $Y \in \mathfrak{A}$ with $Y \cap X \neq \emptyset$ and P(Y) > 0: P(X|Y) > r.

In order to spell out under what conditions these postulates are consistent with the " \leftarrow " of the Lockean thesis,

• LT
$$_{\leftarrow}^{\geq r > rac{1}{2}}$$
: Bel(X) if P(X) $\geq r > rac{1}{2}$

we will need the following probabilistic concept:

Definition

(*P*-Stability) For all $X \in \mathfrak{A}$:

X is *P*-stable^{*r*} iff for all $Y \in \mathfrak{A}$ with $Y \cap X \neq \emptyset$ and P(Y) > 0: P(X|Y) > r.

So *P*-stable^{*r*} propositions have stably high probabilities under salient suppositions. (Examples: All *X* with P(X) = 1; $X = \emptyset$; and *many* more!)

Remark: If X is *P*-stable^{*r*} with $r \in \lfloor \frac{1}{2}, 1 \rfloor$, then X is *P*-stable^{$\frac{1}{2}}$.</sup>

(cf. Skyrms 1977, 1980 on resiliency.)

Then the following representation theorem can be shown:

Theorem

Let Bel be a class of members of a σ -algebra \mathfrak{A} , and let $P : \mathfrak{A} \to [0, 1]$. Then the following two statements are equivalent:

- I. *P* and Bel satisfy P1, B1–B4, and $LT \leftarrow \frac{\geq P(B_W) > \frac{1}{2}}{\leftarrow}$
- II. P satisfies P1 and there is a (uniquely determined) $X \in \mathfrak{A}$, such that
 - X is a non-empty P-stable^{$\frac{1}{2}$} proposition,
 - if P(X) = 1 then X is the least member of \mathfrak{A} with probability 1; and:

For all $Y \in \mathfrak{A}$:

$$Bel(Y)$$
 if and only if $Y \supseteq X$

(and hence, $B_W = X$).

And either side implies the full $LT_{\leftrightarrow}^{\geq P(B_W) > \frac{1}{2}}$: Bel(X) iff $P(X) \geq P(B_W) > \frac{1}{2}$.

With P2 one can prove: The class of *P*-stable^{*r*} propositions *X* in \mathfrak{A} with P(X) < 1 is *well-ordered* with respect to the subset relation.

This implies: If there is a non-empty *P*-stable^{*r*} X in \mathfrak{A} with P(X) < 1 at all, then there is also a *least* such X.

Example: Let *P* be as in the initial example.

6. $P(\{w_7\}) = 0.00006$ ("Ranks") 5. $P(\{w_6\}) = 0.002$ 4. $P(\{w_5\}) = 0.018$ 3. $P(\{w_3\}) = 0.058, P(\{w_4\}) = 0.03994$ 2. $P(\{w_2\}) = 0.342$ 1. $P(\{w_1\}) = 0.54$

This yields the following *P*-stable $\frac{1}{2}$ sets:

- $\{w_1, w_2, w_3, w_4, w_5, w_6, w_7\}$ (≥ 1.0)
- $\{w_1, w_2, w_3, w_4, w_5, w_6\} \ (\geq 0.99994)$
- $\{w_1, w_2, w_3, w_4, w_5\}$ (\geq 0.99794)
- $\{w_1, w_2, w_3, w_4\}$ (\geq 0.97994)
- $\{w_1, w_2\}$ (\geq 0.882)
- $\{w_1\}$ (\geq 0.54) ("Spheres")

Almost all P here have a least P-stable $\frac{1}{2}$ set X with P(X) < 1!

Almost all P here have a least P-stable $\frac{1}{2}$ set X with P(X) < 1!

Hence, for *lots of P* there is an *r*, such that there is a *Bel* with:

B1–4 Logical closure of *Bel*. $LT_{\leftrightarrow}^{>r}$ For all X: *Bel*(X) iff P(X) > r. NT There is an X, such that *Bel*(X) and P(X) < 1. But occasionally there is *no* X, such that Bel(X) and P(X) < 1:

• Lottery Paradox: Given a uniform measure P on a finite set W of worlds, W is the only P-stable^r set with $r \ge \frac{1}{2}$; so only W is to be believed then.

This makes good sense: the agent's degrees of belief don't give her much of a hint of what to believe. *That is why the agent ought to be cautious.*

Moral:

- Given *P* and a cautiousness threshold *r*, the agent's *Bel* is determined uniquely by the Lockean thesis.
- Bel is even closed logically iff
 Bel is given by a P-stable^{1/2} set X with P(X) = r > 1/2.
- So the Lockean thesis and the logical closure of belief are jointly satisfiable as long as the threshold *r* is *co-determined* by *P*.
- From the probabilistic point of view, belief *simpliciter* corresponds to *resiliently* high probability—which seem plausible even on independent grounds.

" \rightarrow " of the Lockean Thesis and Conditional Belief

Now let 'Bel' express an agent's conditional beliefs:

Bel(Y|X) iff the agent has a belief in Y on the supposition of X. Bel(Y) iff Bel(Y|W) iff the agent believes Y (unconditionally). Now let 'Bel' express an agent's conditional beliefs:

Bel(Y|X) iff the agent has a belief in Y on the supposition of X. Bel(Y) iff Bel(Y|W) iff the agent believes Y (unconditionally).

In this way, we can reformulate the axioms of belief expansion/revision; e.g.,

• (Finite Conjunction) If $\neg Bel(\neg X|W)$, then for all $Y, Z \in \mathfrak{A}$: If Bel(Y|X) and Bel(Z|X), then $Bel(Y \cap Z|X)$.

or even

(Finite Conjunction) For all Y, Z ∈ 𝔅:
 If Bel(Y|X) and Bel(Z|X), then Bel(Y ∩ Z|X).

Now let 'Bel' express an agent's conditional beliefs:

Bel(Y|X) iff the agent has a belief in Y on the supposition of X. Bel(Y) iff Bel(Y|W) iff the agent believes Y (unconditionally).

In this way, we can reformulate the axioms of belief expansion/revision; e.g.,

• (Finite Conjunction) If $\neg Bel(\neg X|W)$, then for all $Y, Z \in \mathfrak{A}$: If Bel(Y|X) and Bel(Z|X), then $Bel(Y \cap Z|X)$.

or even

• (Finite Conjunction) For all $Y, Z \in \mathfrak{A}$: If Bel(Y|X) and Bel(Z|X), then $Bel(Y \cap Z|X)$.

From this (and more) we have again: For every $X \in \mathfrak{A}$ [with $\neg Bel(\neg X | W)$], there is a *strongest proposition* B_X , such that Bel(Y | X) iff $Y \supseteq B_X$.

• (Expansion) For all $Y \in \mathfrak{A}$ such that $Y \cap B_W \neq \emptyset$: $B_Y = Y \cap B_W$.

This "quasi-Bayesian" postulate is contained in the classic qualitative theory of belief revision (AGM 1985, Gärdenfors 1988).

• (Expansion) For all $Y \in \mathfrak{A}$ such that $Y \cap B_W \neq \emptyset$: $B_Y = Y \cap B_W$.

This "quasi-Bayesian" postulate is contained in the classic qualitative theory of belief revision (AGM 1985, Gärdenfors 1988).

Indeed, the full AGM theory includes the stronger postulate

• (Revision) For all $X, Y \in \mathfrak{A}$ such that $Y \cap B_X \neq \emptyset$: $B_{X \cap Y} = Y \cap B_X$

which entails that Bel is given by a total pre-order (sphere system) of worlds.

We get the following representation theorem for belief expansion and " \rightarrow " of the Lockean Thesis (with *r* independent of *P*):

Theorem

The following two statements are equivalent:

- I. P and Bel satisfy P1, the AGM axioms for belief expansion, and $LT^{>r}_{\rightarrow}$.
- II. *P* satisfies P1, and there is a (uniquely determined) $X \in \mathfrak{A}$, such that X is a non-empty *P*-stable^r proposition, and $Bel(\cdot|\cdot)$ is given by $X (= B_W)$.
- LT[≥]*r*</sup> ("→" of Lockean thesis) For all $Y \in \mathfrak{A}$, s.t. P(Y) > 0 and $Y \cap B_W \neq \emptyset$: For all $Z \in \mathfrak{A}$, if Bel(Z|Y), then P(Z|Y) > r.

And either side implies the full $LT_{\leftrightarrow}^{\geq P_Y(B_Y)}$: Bel(Z|Y) iff $P_Y(Z) \geq P_Y(B_Y) > r$.

And we have the following representation theorem for belief revision and " \rightarrow " of the Lockean Thesis (with *r* independent of *P*):

Theorem

The following two statements are equivalent:

- I. P and Bel satisfy P1–P2, the AGM axioms for belief revision, and $LT^{>r}_{\rightarrow}$.
- II. P satisfies P1–P2, and there is a (uniquely determined) chain X of non-empty P-stable^r propositions in 𝔄, such that Bel(·|·) is given by X in a Lewisian sphere-system-like manner.
- $LT^{>r}_{\rightarrow}$ (" \rightarrow " of Lockean thesis) For all $Y \in \mathfrak{A}$, s.t. P(Y) > 0: For all $Z \in \mathfrak{A}$, if Bel(Z|Y), then P(Z|Y) > r.

And either side implies the full $LT_{\leftrightarrow}^{\geq P_Y(B_Y)}$: Bel(Z|Y) iff $P_Y(Z) \geq P_Y(B_Y) > r$.

Example: Let P be again as in the example before.

Then if $Bel(\cdot|\cdot)$ satisfies AGM, and if *P* and $Bel(\cdot|\cdot)$ jointly satisfy $LT \rightarrow \frac{1}{2}$, then $Bel(\cdot|\cdot)$ must be given by some coarse-graining of the ranking in red below.

Choosing the maximal (most fine-grained) $Bel(\cdot|\cdot)$ yields the following:

٩	$Bel(A \wedge B \mid A)$	$(A \rightarrow A \land B)$
٩	$\textit{Bel}(A \wedge B B)$	$(B \rightarrow A \land B)$
•	$\textit{Bel}(A \wedge B A \lor B)$	$(A \lor B \to A \land B)$
•	Bel(A C)	(C ightarrow A)
•	egreen Bel(B C)	$(C \twoheadrightarrow B)$
•	$\textit{Bel}(A \mid C \land \neg B)$	$(C \wedge \neg B ightarrow A)$
•	$ egreen Bel(B \neg A)$	$(\neg A \twoheadrightarrow B)$

For three worlds again (and $r = \frac{1}{2}$), the maximal $Bel(\cdot|\cdot)$ as being determined by *P* and *r* are given by these rankings:

Hannes Leitgeb (LMU Munich)

February 2012 20 / 24

Moral:

- Given P and a threshold r, the agent's Bel(·|·) is not determined uniquely by the "→" of the Lockean thesis.
- But any such Bel(·|·) is closed logically iff it is given by a sphere system of P-stable^r sets.
- Given P and a threshold r, the agent's maximal Bel(·|·) amongst those that satisfy all of our postulates is determined uniquely.

(And there is always such a unique maximal choice Bel_P^r given a rather weak auxiliary assumption.)

As promised, we end up with a unified theory of belief and probability.

The theory is robust-two plausible paths lead to it.

Postscript

Our example P derives from Bayesian Philosophy of Science (Dorling 1979)

E': Observational result for the secular acceleration of the moon.

T: Relevant part of Newtonian mechanics.

H: Auxiliary hypothesis that tidal friction is negligible.

$$P(T|E') = 0.8976, P(H|E') = 0.003.$$

while I will insert definite numbers so as to simplify the mathematical working, nothing in my final qualitative interpretation... will depend on the precise numbers...

$$Bel_P^r(T|E'), Bel_P^r(\neg H|E')$$
 (with $r=rac{3}{4}$).

while I will insert definite numbers so as to simplify the mathematical working, nothing in my final qualitative interpretation... will depend on the precise numbers...

$$\mathcal{B}el_P^r(\mathcal{T}|E'), \, \mathcal{B}el_P^r(\neg \mathcal{H}|E') \, \, (ext{with} \, r=rac{3}{4}).$$

... scientists always conducted their serious scientific debates in terms of finite qualitative subjective probability assignments to scientific hypotheses (Dorling 1979).

Hannes Leitgeb (LMU Munich)