A Joint Theory of Belief and Probability

Hannes Leitgeb

LMU Munich

February 2012

A Joint Theory of Belief and Probability

Rational belief comes in a qualitative version-belief simpliciter-and in a quantitative one-degrees of belief.

These are subject to different standards of normativity.

A Joint Theory of Belief and Probability

Rational belief comes in a qualitative version-belief simpliciter-and in a quantitative one-degrees of belief.

These are subject to different standards of normativity.
And there does not seem to be any obvious reduction of one to the other:

- It is possible to believe in the truth of some propositions, without being certain of these propositions.

This rules out: $\operatorname{Bel}(X)$ iff $P(X)=1$.

A Joint Theory of Belief and Probability

Rational belief comes in a qualitative version-belief simpliciter-and in a quantitative one-degrees of belief.

These are subject to different standards of normativity.
And there does not seem to be any obvious reduction of one to the other:

- It is possible to believe in the truth of some propositions, without being certain of these propositions.

This rules out: $\operatorname{Bel}(X)$ iff $P(X)=1$.

- When we believe two hypotheses A and B to be true, $A \wedge B$ does seem believable to be true for us (as all other of their logical consequences).

This seems to rule out the Lockean thesis $\mathrm{LT}_{\leftrightarrow}^{>r}: \operatorname{Bel}(X)$ iff $P(X)>r$.

A Joint Theory of Belief and Probability

Rational belief comes in a qualitative version-belief simpliciter-and in a quantitative one-degrees of belief.

These are subject to different standards of normativity.
And there does not seem to be any obvious reduction of one to the other:

- It is possible to believe in the truth of some propositions, without being certain of these propositions.

This rules out: $\operatorname{Bel}(X)$ iff $P(X)=1$.

- When we believe two hypotheses A and B to be true, $A \wedge B$ does seem believable to be true for us (as all other of their logical consequences).

This seems to rule out the Lockean thesis $\mathrm{LT}_{\leftrightarrow}^{>r}: \operatorname{Bel}(X)$ iff $P(X)>r$.
One reason why qualitative belief is so valuable is that it occupies a more elementary scale of measurement than quantitative belief.

So the really interesting question is:
Both qualitative and quantitative belief are concepts of belief. How exactly do they relate to each other?

So the really interesting question is:
Both qualitative and quantitative belief are concepts of belief. How exactly do they relate to each other?

Two different paths lead to one and the same answer:
(1) " \leftarrow " of the Lockean Thesis and the Logic of Absolute Belief
(2) " \rightarrow " of the Lockean Thesis and the Logic of Conditional Belief
cf. Skyrms (1977), (1980) on resiliency.
Snow (1998), Dubois et al. (1998) on big-stepped probabilities.

An answer is crucial, for how else can we reconcile traditional philosophy of science, epistemology, philosophy of language, and cognitive science with:

" \leftarrow " of the Lockean Thesis and the Logic of Absolute Belief

Let W be a set of possible worlds, and let \mathfrak{M} be an algebra of subsets of W (propositions) in which an agent is interested at a time.
We assume that \mathfrak{A} is closed under countable unions (σ-algebra).

Let P be an agent's degree-of-belief function at the time.
P1 (Probability) $P: \mathfrak{A} \rightarrow[0,1]$ is a probability measure on \mathfrak{A}. $P(Y \mid X)=\frac{P(Y \cap X)}{P(X)}$, when $P(X)>0$.

P2 (Countable Additivity) If $X_{1}, X_{2}, \ldots, X_{n}, \ldots$ are pairwise disjoint members of \mathfrak{M}, then

$$
P\left(\bigcup_{n \in \mathbb{N}} X_{n}\right)=\sum_{n=1}^{\infty} P\left(X_{n}\right) .
$$

E.g., a probability measure P :

P conditionalized on C :

Accordingly, let Bel express an agent's beliefs.
B1 (Logical Truth) $\operatorname{Bel}(W)$.
B2 (One Premise Logical Closure) For all $Y, Z \in \mathfrak{A}$: If $\operatorname{Bel}(Y)$ and $Y \subseteq Z$, then $\operatorname{Bel}(Z)$.

B3 (Finite Conjunction) For all $Y, Z \in \mathfrak{M}$: If $\operatorname{Bel}(Y)$ and $\operatorname{Bel}(Z)$, then $\operatorname{Bel}(Y \cap Z)$.

B4 (General Conjunction) For $\mathscr{Y}=\{Y \in \mathfrak{A} \mid \operatorname{Bel}(Y)\}, \cap \mathcal{Y}$ is a member of \mathfrak{U}, and $\operatorname{Bel}(\cap \mathcal{Y})$.

It follows: There is a strongest proposition B_{W}, such that $\operatorname{Bel}(Y)$ iff $Y \supseteq B_{W}$.

In order to spell out under what conditions these postulates are consistent with the " \leftarrow " of the Lockean thesis,

- $\mathrm{LT}^{\geq r>\frac{1}{2}}: \quad B e l(X)$ if $P(X) \geq r>\frac{1}{2}$
we will need the following probabilistic concept:

In order to spell out under what conditions these postulates are consistent with the " \leftarrow " of the Lockean thesis,

- $\mathrm{LT}_{\leftarrow}^{\geq r>\frac{1}{2}}: \quad B e l(X)$ if $P(X) \geq r>\frac{1}{2}$
we will need the following probabilistic concept:

Definition

(P-Stability) For all $X \in \mathfrak{A}$:
X is P-stable ${ }^{r}$ iff for all $Y \in \mathfrak{A}$ with $Y \cap X \neq \varnothing$ and $P(Y)>0: P(X \mid Y)>r$.

In order to spell out under what conditions these postulates are consistent with the " \leftarrow " of the Lockean thesis,

- $\mathrm{LT}^{\geq r>\frac{1}{2}}: \quad B e l(X)$ if $P(X) \geq r>\frac{1}{2}$
we will need the following probabilistic concept:

Definition

(P-Stability) For all $X \in \mathfrak{A}$:
X is P-stable ${ }^{r}$ iff for all $Y \in \mathfrak{A}$ with $Y \cap X \neq \varnothing$ and $P(Y)>0: P(X \mid Y)>r$.

So P-stable ${ }^{r}$ propositions have stably high probabilities under salient suppositions. (Examples: All X with $P(X)=1 ; X=\varnothing$; and many more!)

Remark: If X is P-stable ${ }^{r}$ with $r \in\left[\frac{1}{2}, 1\right)$, then X is P-stable ${ }^{\frac{1}{2}}$.
(cf. Skyrms 1977, 1980 on resiliency.)

Then the following representation theorem can be shown:

Theorem

Let Bel be a class of members of a σ-algebra \mathfrak{A}, and let $P: \mathfrak{U} \rightarrow[0,1]$. Then the following two statements are equivalent:
I. P and Bel satisfy $\mathrm{P} 1, \mathrm{~B} 1-\mathrm{B} 4$, and $\mathrm{LT} \underset{\leftarrow}{\geq P\left(B_{w}\right)>\frac{1}{2}}$.
II. P satisfies P1 and there is a (uniquely determined) $X \in \mathfrak{A}$, such that
$-X$ is a non-empty P-stable ${ }^{\frac{1}{2}}$ proposition,

- if $P(X)=1$ then X is the least member of \mathfrak{A} with probability 1 ; and:

For all $Y \in \mathfrak{N}$:
$\operatorname{Bel}(Y)$ if and only if $Y \supseteq X$
(and hence, $B_{W}=X$).

And either side implies the full $\mathrm{LT}_{\leftrightarrow}^{\geq P\left(B_{W}\right)>\frac{1}{2}}: \quad \operatorname{Be}(X)$ iff $P(X) \geq P\left(B_{W}\right)>\frac{1}{2}$.

With P2 one can prove: The class of P-stable ${ }^{r}$ propositions X in \mathfrak{A} with $P(X)<1$ is well-ordered with respect to the subset relation.

This implies: If there is a non-empty P-stable ${ }^{r} X$ in \mathfrak{A} with $P(X)<1$ at all, then there is also a least such X .

Example: Let P be as in the initial example.
6. $P\left(\left\{w_{7}\right\}\right)=0.00006$
("Ranks")
5. $P\left(\left\{w_{6}\right\}\right)=0.002$
4. $P\left(\left\{w_{5}\right\}\right)=0.018$
3. $P\left(\left\{w_{3}\right\}\right)=0.058, P\left(\left\{w_{4}\right\}\right)=0.03994$
2. $P\left(\left\{w_{2}\right\}\right)=0.342$

1. $P\left(\left\{w_{1}\right\}\right)=0.54$

This yields the following P-stable ${ }^{\frac{1}{2}}$ sets:

- $\left\{w_{1}, w_{2}, w_{3}, w_{4}, w_{5}, w_{6}, w_{7}\right\}(\geq 1.0)$
- $\left\{w_{1}, w_{2}, w_{3}, w_{4}, w_{5}, w_{6}\right\}(\geq 0.99994)$
- $\left\{w_{1}, w_{2}, w_{3}, w_{4}, w_{5}\right\} \quad(\geq 0.99794)$
- $\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\}(\geq 0.97994)$
- $\left\{w_{1}, w_{2}\right\}(\geq 0.882)$
- $\left\{w_{1}\right\}(\geq 0.54)$

Almost all P here have a least P-stable ${ }^{\frac{1}{2}}$ set X with $P(X)<1$!

Almost all P here have a least P-stable ${ }^{\frac{1}{2}}$ set X with $P(X)<1$!
Hence, for lots of P there is an r, such that there is a Bel with:
B1-4 Logical closure of Bel.
$\mathrm{LT}_{\leftrightarrow}^{>r}$ For all $X: \operatorname{Bel}(X)$ iff $P(X)>r$.
NT There is an X, such that $\operatorname{Bel}(X)$ and $P(X)<1$.

But occasionally there is no X, such that $\operatorname{Bel}(X)$ and $P(X)<1$:

- Lottery Paradox: Given a uniform measure P on a finite set W of worlds, W is the only P-stable ${ }^{r}$ set with $r \geq \frac{1}{2}$; so only W is to be believed then.

This makes good sense: the agent's degrees of belief don't give her much of a hint of what to believe. That is why the agent ought to be cautious.

Moral:

- Given P and a cautiousness threshold r, the agent's $B e l$ is determined uniquely by the Lockean thesis.
- Bel is even closed logically iff
$B e l$ is given by a P-stable ${ }^{\frac{1}{2}}$ set X with $P(X)=r>\frac{1}{2}$.
- So the Lockean thesis and the logical closure of belief are jointly satisfiable as long as the threshold r is co-determined by P.
- From the probabilistic point of view, belief simpliciter corresponds to resiliently high probability-which seem plausible even on independent grounds.

$" \rightarrow$ " of the Lockean Thesis and Conditional Belief

Now let 'Bel' express an agent's conditional beliefs:
$\operatorname{Bel}(Y \mid X)$ iff the agent has a belief in Y on the supposition of X. $\operatorname{Bel}(Y)$ iff $\operatorname{Bel}(Y \mid W)$ iff the agent believes Y (unconditionally).

$" \rightarrow$ " of the Lockean Thesis and Conditional Belief

Now let 'Bel' express an agent's conditional beliefs:
$\operatorname{Bel}(Y \mid X)$ iff the agent has a belief in Y on the supposition of X. $\operatorname{Bel}(Y)$ iff $\operatorname{Bel}(Y \mid W)$ iff the agent believes Y (unconditionally).

In this way, we can reformulate the axioms of belief expansion/revision; e.g.,

- (Finite Conjunction) If $\neg \operatorname{Bel}(\neg X \mid W)$, then for all $Y, Z \in \mathfrak{A}$: If $\operatorname{Bel}(Y \mid X)$ and $\operatorname{Bel}(Z \mid X)$, then $\operatorname{Bel}(Y \cap Z \mid X)$.
or even
- (Finite Conjunction) For all $Y, Z \in \mathfrak{N}$:

If $\operatorname{Bel}(Y \mid X)$ and $\operatorname{Bel}(Z \mid X)$, then $\operatorname{Bel}(Y \cap Z \mid X)$.

$" \rightarrow$ " of the Lockean Thesis and Conditional Belief

Now let 'Bel' express an agent's conditional beliefs:
$\operatorname{Bel}(Y \mid X)$ iff the agent has a belief in Y on the supposition of X.
$\operatorname{Bel}(Y)$ iff $\operatorname{Bel}(Y \mid W)$ iff the agent believes Y (unconditionally).
In this way, we can reformulate the axioms of belief expansion/revision; e.g.,

- (Finite Conjunction) If $\neg B e l(\neg X \mid W)$, then for all $Y, Z \in \mathfrak{X}$: If $\operatorname{Bel}(Y \mid X)$ and $\operatorname{Bel}(Z \mid X)$, then $\operatorname{Bel}(Y \cap Z \mid X)$.
or even
- (Finite Conjunction) For all $Y, Z \in \mathfrak{A}$:

If $\operatorname{Bel}(Y \mid X)$ and $\operatorname{Bel}(Z \mid X)$, then $\operatorname{Bel}(Y \cap Z \mid X)$.
From this (and more) we have again: For every $X \in \mathfrak{A}[$ with $\neg \operatorname{Bel}(\neg X \mid W)]$, there is a strongest proposition B_{X}, such that $\operatorname{Bel}(Y \mid X)$ iff $Y \supseteq B_{X}$.

- (Expansion) For all $Y \in \mathfrak{A}$ such that $Y \cap B_{W} \neq \varnothing$: $B_{Y}=Y \cap B_{W}$.

This "quasi-Bayesian" postulate is contained in the classic qualitative theory of belief revision (AGM 1985, Gärdenfors 1988).

- (Expansion) For all $Y \in \mathfrak{A}$ such that $Y \cap B_{W} \neq \varnothing$: $B_{Y}=Y \cap B_{W}$.

This "quasi-Bayesian" postulate is contained in the classic qualitative theory of belief revision (AGM 1985, Gärdenfors 1988).

Indeed, the full AGM theory includes the stronger postulate

- (Revision) For all $X, Y \in \mathfrak{A}$ such that $Y \cap B_{X} \neq \varnothing: B_{X \cap Y}=Y \cap B_{X}$ which entails that Bel is given by a total pre-order (sphere system) of worlds.

We get the following representation theorem for belief expansion and " \rightarrow " of the Lockean Thesis (with r independent of P):

Theorem

The following two statements are equivalent:
I. P and Bel satisfy P1, the AGM axioms for belief expansion, and $\mathrm{LT}_{\rightarrow}^{>r}$.
II. P satisfies P 1 , and there is a (uniquely determined) $X \in \mathfrak{N}$, such that X is a non-empty P-stable ${ }^{r}$ proposition, and $\operatorname{Bel}(\cdot \mid \cdot)$ is given by $X\left(=B_{W}\right)$.
$\mathrm{LT}_{\rightarrow}^{>r}\left(\right.$ " \rightarrow " of Lockean thesis) For all $Y \in \mathfrak{A}$, s.t. $P(Y)>0$ and $Y \cap B_{W} \neq \varnothing$: For all $Z \in \mathfrak{A}$, if $\operatorname{Bel}(Z \mid Y)$, then $P(Z \mid Y)>r$.

And either side implies the full $\mathrm{LT} \stackrel{>P_{Y}\left(B_{Y}\right)}{\leftrightarrow}: \quad B e l(Z \mid Y)$ iff $P_{Y}(Z) \geq P_{Y}\left(B_{Y}\right)>r$.

And we have the following representation theorem for belief revision and " \rightarrow " of the Lockean Thesis (with r independent of P):

Theorem

The following two statements are equivalent:
I. P and Bel satisfy P1-P2, the AGM axioms for belief revision, and $\mathrm{LT} \rightarrow$.
II. P satisfies P1-P2, and there is a (uniquely determined) chain X of non-empty P-stabler propositions in \mathfrak{A}, such that $\operatorname{Bel}(\cdot \mid \cdot)$ is given by X in a Lewisian sphere-system-like manner.
$\mathrm{LT}^{>r}$ (" \rightarrow " of Lockean thesis) For all $Y \in \mathfrak{A}$, s.t. $P(Y)>0$:
For all $Z \in \mathfrak{A}$, if $\operatorname{Bel}(Z \mid Y)$, then $P(Z \mid Y)>r$.
And either side implies the full $\mathrm{LT}_{\leftrightarrow}^{\geq P_{Y}\left(B_{Y}\right)}: \operatorname{Bel}(Z \mid Y)$ iff $P_{Y}(Z) \geq P_{Y}\left(B_{Y}\right)>r$.

Example: Let P be again as in the example before.
Then if $\operatorname{Bel}(\cdot \mid \cdot)$ satisfies AGM, and if P and $\operatorname{Bel}(\cdot \mid \cdot)$ jointly satisfy $L T_{\rightarrow}^{>\frac{1}{2}}$, then $\operatorname{Bel}(\cdot \mid \cdot)$ must be given by some coarse-graining of the ranking in red below.

Choosing the maximal (most fine-grained) Bel($\cdot \mid \cdot$) yields the following:

- $\operatorname{Bel}(A \wedge B \mid A) \quad(A \rightarrow A \wedge B)$
- $\operatorname{Bel}(A \wedge B \mid B) \quad(B \rightarrow A \wedge B)$
- $B e l(A \wedge B \mid A \vee B)(A \vee B \rightarrow A \wedge B)$
- $\operatorname{Bel}(A \mid C)$
$(C \rightarrow A)$
- $\neg \operatorname{Bel}(B \mid C)$
$(C \nrightarrow B)$
- $\operatorname{Bel}(A \mid C \wedge \neg B) \quad(C \wedge \neg B \rightarrow A)$
- $\neg \operatorname{Bel}(B \mid \neg A) \quad(\neg A \rightarrow B)$

For three worlds again (and $r=\frac{1}{2}$), the maximal $\operatorname{Bel}(\cdot \mid \cdot$) as being determined by P and r are given by these rankings:

Moral:

- Given P and a threshold r, the agent's $\operatorname{Bel}(\cdot \mid \cdot)$ is not determined uniquely by the " \rightarrow " of the Lockean thesis.
- But any such $\operatorname{Bel}(\cdot \mid \cdot)$ is closed logically iff it is given by a sphere system of P-stable ${ }^{r}$ sets.
- Given P and a threshold r, the agent's maximal $\operatorname{Bel}(\cdot \mid \cdot)$ amongst those that satisfy all of our postulates is determined uniquely.
(And there is always such a unique maximal choice $B e l_{p}^{r}$ given a rather weak auxiliary assumption.)

As promised, we end up with a unified theory of belief and probability.
The theory is robust-two plausible paths lead to it.

Postscript

Our example P derives from Bayesian Philosophy of Science (Dorling 1979)

E^{\prime} : Observational result for the secular acceleration of the moon.
T : Relevant part of Newtonian mechanics.
H : Auxiliary hypothesis that tidal friction is negligible.
$P\left(T \mid E^{\prime}\right)=0.8976, P\left(H \mid E^{\prime}\right)=0.003$.
while I will insert definite numbers so as to simplify the mathematical working, nothing in my final qualitative interpretation... will depend on the precise numbers...

$$
\left.\operatorname{Bel}_{P}^{r}\left(T \mid E^{\prime}\right) \text {, } \operatorname{Bel} r_{P}^{r}\left(\neg H \mid E^{\prime}\right) \text { (with } r=\frac{3}{4}\right) \text {. }
$$

while I will insert definite numbers so as to simplify the mathematical working, nothing in my final qualitative interpretation... will depend on the precise numbers...

$$
\operatorname{Bel}_{P}^{r}\left(T \mid E^{\prime}\right) \text {, } \operatorname{Bel}_{P}^{r}\left(\neg H \mid E^{\prime}\right) \text { (with } r=\frac{3}{4} \text {). }
$$

... scientists always conducted their serious scientific debates in terms of finite qualitative subjective probability assignments to scientific hypotheses (Dorling 1979).

