Round Table on Coherence (Part I)

Branden Fitelson¹

Department of Philosophy Rutgers University

&

Munich Center for Mathematical Philosophy Ludwig-Maximilians-Universität München

branden@fitelson.org
http://fitelson.org/

¹These slides include joint work with Daniel Berntson (Princeton), Rachael Briggs (ANU), Fabrizio Cariani (NU), Kenny Easwaran (USC), and David McCarthy (HKU). Please do not cite or quote without permission.

Branden Fitelson

Round Table on Coherence (Part I)

• Today's Round Table is about a new way of thinking about formal, epistemic coherence requirements, which was inspired by Jim Joyce's [10, 9] arguments for *probabilism*.

• Richard will tell us about such arguments for probabilism.

- I'm going to explain how to generalize Joyce's idea to *any* type of judgment that can be assessed in terms of *accuracy*.
- Then, I will describe how this framework applies to *full belief* (this is joint work with Kenny Easwaran [1, 2]).
- The framework has also been applied to comparative confidence (that is joint work with David McCarthy [7]).
 - All three of these applications of the general framework are described in detail in the notes from my recent seminar here at MCMP. See: http://fitelson.org/coherence.
- Let's begin by thinking about coherence requirements for full belief. The traditional/classical story is that *deductive consistency* is a/the coherence requirement for full belief.

• Today's Round Table is about a new way of thinking about formal, epistemic coherence requirements, which was inspired by Jim Joyce's [10, 9] arguments for *probabilism*.

• Richard will tell us about such arguments for probabilism.

- I'm going to explain how to generalize Joyce's idea to *any* type of judgment that can be assessed in terms of *accuracy*.
- Then, I will describe how this framework applies to *full belief* (this is joint work with Kenny Easwaran [1, 2]).
- The framework has also been applied to *comparative confidence* (that is joint work with David McCarthy [7]).
 - All three of these applications of the general framework are described in detail in the notes from my recent seminar here at MCMP. See: http://fitelson.org/coherence.
- Let's begin by thinking about coherence requirements for full belief. The traditional/classical story is that *deductive consistency* is a/the coherence requirement for full belief.

- Today's Round Table is about a new way of thinking about formal, epistemic coherence requirements, which was inspired by Jim Joyce's [10, 9] arguments for *probabilism*.
 - Richard will tell us about such arguments for probabilism.
- I'm going to explain how to generalize Joyce's idea to *any* type of judgment that can be assessed in terms of *accuracy*.
- Then, I will describe how this framework applies to *full belief* (this is joint work with Kenny Easwaran [1, 2]).
- The framework has also been applied to *comparative confidence* (that is joint work with David McCarthy [7]).
 - All three of these applications of the general framework are described in detail in the notes from my recent seminar here at MCMP. See: http://fitelson.org/coherence.
- Let's begin by thinking about coherence requirements for full belief. The traditional/classical story is that *deductive consistency* is a/the coherence requirement for full belief.

- Today's Round Table is about a new way of thinking about formal, epistemic coherence requirements, which was inspired by Jim Joyce's [10, 9] arguments for *probabilism*.
 - Richard will tell us about such arguments for probabilism.
- I'm going to explain how to generalize Joyce's idea to *any* type of judgment that can be assessed in terms of *accuracy*.
- Then, I will describe how this framework applies to *full belief* (this is joint work with Kenny Easwaran [1, 2]).
- The framework has also been applied to *comparative confidence* (that is joint work with David McCarthy [7]).
 - All three of these applications of the general framework are described in detail in the notes from my recent seminar here at MCMP. See: http://fitelson.org/coherence.
- Let's begin by thinking about coherence requirements for full belief. The traditional/classical story is that *deductive consistency* is a/the coherence requirement for full belief.

- Today's Round Table is about a new way of thinking about formal, epistemic coherence requirements, which was inspired by Jim Joyce's [10, 9] arguments for *probabilism*.
 - Richard will tell us about such arguments for probabilism.
- I'm going to explain how to generalize Joyce's idea to *any* type of judgment that can be assessed in terms of *accuracy*.
- Then, I will describe how this framework applies to *full belief* (this is joint work with Kenny Easwaran [1, 2]).
- The framework has also been applied to *comparative confidence* (that is joint work with David McCarthy [7]).
 - All three of these applications of the general framework are described in detail in the notes from my recent seminar here at MCMP. See: http://fitelson.org/coherence.
- Let's begin by thinking about coherence requirements for full belief. The traditional/classical story is that *deductive consistency* is a/the coherence requirement for full belief.

- Today's Round Table is about a new way of thinking about formal, epistemic coherence requirements, which was inspired by Jim Joyce's [10, 9] arguments for *probabilism*.
 - Richard will tell us about such arguments for probabilism.
- I'm going to explain how to generalize Joyce's idea to *any* type of judgment that can be assessed in terms of *accuracy*.
- Then, I will describe how this framework applies to *full belief* (this is joint work with Kenny Easwaran [1, 2]).
- The framework has also been applied to *comparative confidence* (that is joint work with David McCarthy [7]).
 - All three of these applications of the general framework are described in detail in the notes from my recent seminar here at MCMP. See: http://fitelson.org/coherence.
- Let's begin by thinking about coherence requirements for full belief. The traditional/classical story is that *deductive consistency* is a/the coherence requirement for full belief.

- Today's Round Table is about a new way of thinking about formal, epistemic coherence requirements, which was inspired by Jim Joyce's [10, 9] arguments for *probabilism*.
 - Richard will tell us about such arguments for probabilism.
- I'm going to explain how to generalize Joyce's idea to *any* type of judgment that can be assessed in terms of *accuracy*.
- Then, I will describe how this framework applies to *full belief* (this is joint work with Kenny Easwaran [1, 2]).
- The framework has also been applied to *comparative confidence* (that is joint work with David McCarthy [7]).
 - All three of these applications of the general framework are described in detail in the notes from my recent seminar here at MCMP. See: http://fitelson.org/coherence.
- Let's begin by thinking about coherence requirements for full belief. The traditional/classical story is that *deductive consistency* is a/the coherence requirement for full belief.

- Notation: *B*(*p*) [*S* believes that *p*], *D*(*p*) [*S* disbelieves that *p*], and **B** [the set of *all* of *S*'s beliefs and disbeliefs]. For simplicity, we assume that *S* is *finite and opinionated*.
- Here, I will use the word "reasonable" to mean "supported by one's evidence" (for now, in an informal, intuitive sense).
- Unfortunately, deductive consistency is implicated in some infamous *paradoxes e.g.*, the Lottery and the Preface.
 - Lottery Paradox ([12],[6]). For each ticket *i*, it is highly probable that *i* is a loser (*L_i*). So, it would seem reasonable to be such that *B*(*L_i*), for each *i*. However, this inevitably renders our set *3 inconsistent*, since we *know* that (∃*i*)(¬*L_i*).
 - Preface Paradox ([14],[4]). Let B ⊂ B be the set containing *all* of your *reasonable* (1st-order) beliefs. This B is an incredibly rich and complex set of judgments. You're fallible (*i.e.*, your 1st-order evidence is *sometimes misleading*). So, it seems reasonable to believe that *some B*'s in B are false. However, adding *this* (2nd-order) belief to B renders B *inconsistent*.

- Notation: *B*(*p*) [*S* believes that *p*], *D*(*p*) [*S* disbelieves that *p*], and **B** [the set of *all* of *S*'s beliefs and disbeliefs]. For simplicity, we assume that *S* is *finite and opinionated*.
- Here, I will use the word "reasonable" to mean "supported by one's evidence" (for now, in an informal, intuitive sense).
- Unfortunately, deductive consistency is implicated in some infamous *paradoxes e.g.*, the Lottery and the Preface.
 - Lottery Paradox ([12],[6]). For each ticket *i*, it is highly probable that *i* is a loser (*L_i*). So, it would seem reasonable to be such that *B*(*L_i*), for each *i*. However, this inevitably renders our set 𝔅 *inconsistent*, since we *know* that (∃*i*)(¬*L_i*).
 - Preface Paradox ([14],[4]). Let B ⊂ B be the set containing all of your *reasonable* (1st-order) beliefs. This B is an incredibly rich and complex set of judgments. You're fallible (*i.e.*, your 1st-order evidence is *sometimes misleading*). So, it seems reasonable to believe that *some* B's in B are false. However, adding *this* (2nd-order) belief to B renders B *inconsistent*.

- Notation: *B*(*p*) [*S* believes that *p*], *D*(*p*) [*S* disbelieves that *p*], and **B** [the set of *all* of *S*'s beliefs and disbeliefs]. For simplicity, we assume that *S* is *finite and opinionated*.
- Here, I will use the word "reasonable" to mean "supported by one's evidence" (for now, in an informal, intuitive sense).
- Unfortunately, deductive consistency is implicated in some infamous *paradoxes e.g.*, the Lottery and the Preface.
 - **Lottery Paradox** ([12],[6]). For each ticket *i*, it is highly probable that *i* is a loser (L_i). So, it would seem reasonable to be such that $B(L_i)$, for each *i*. However, this inevitably renders our set \mathfrak{B} *inconsistent*, since we *know* that $(\exists i)(\neg L_i)$.
 - **Preface Paradox** ([14],[4]). Let $\mathbf{B} \subset \mathfrak{B}$ be the set containing *all* of your *reasonable* (1st-order) beliefs. This **B** is an incredibly rich and complex set of judgments. You're fallible (*i.e.*, your 1st-order evidence is *sometimes misleading*). So, it seems reasonable to believe that *some* B's in **B** are false. However, adding *this* (2nd-order) belief to **B** renders \mathfrak{B} *inconsistent*.

- Notation: *B*(*p*) [*S* believes that *p*], *D*(*p*) [*S* disbelieves that *p*], and **B** [the set of *all* of *S*'s beliefs and disbeliefs]. For simplicity, we assume that *S* is *finite and opinionated*.
- Here, I will use the word "reasonable" to mean "supported by one's evidence" (for now, in an informal, intuitive sense).
- Unfortunately, deductive consistency is implicated in some infamous *paradoxes e.g.*, the Lottery and the Preface.
 - Lottery Paradox ([12],[6]). For each ticket *i*, it is highly probable that *i* is a loser (L_i). So, it would seem reasonable to be such that $B(L_i)$, for each *i*. However, this inevitably renders our set \mathfrak{B} *inconsistent*, since we *know* that $(\exists i)(\neg L_i)$.
 - **Preface Paradox** ([14],[4]). Let $\mathbf{B} \subset \mathfrak{B}$ be the set containing *all* of your *reasonable* (1^{*st*}-order) beliefs. This **B** is an incredibly rich and complex set of judgments. You're fallible (*i.e.*, your 1^{*st*}-order evidence is *sometimes misleading*). So, it seems reasonable to believe that *some* B's in **B** are false. However, adding *this* (2^{*nd*}-order) belief to **B** renders \mathfrak{B} *inconsistent*.

- Notation: *B*(*p*) [*S* believes that *p*], *D*(*p*) [*S* disbelieves that *p*], and **B** [the set of *all* of *S*'s beliefs and disbeliefs]. For simplicity, we assume that *S* is *finite and opinionated*.
- Here, I will use the word "reasonable" to mean "supported by one's evidence" (for now, in an informal, intuitive sense).
- Unfortunately, deductive consistency is implicated in some infamous *paradoxes e.g.*, the Lottery and the Preface.
 - Lottery Paradox ([12],[6]). For each ticket *i*, it is highly probable that *i* is a loser (L_i). So, it would seem reasonable to be such that $B(L_i)$, for each *i*. However, this inevitably renders our set \mathfrak{B} *inconsistent*, since we *know* that $(\exists i)(\neg L_i)$.
 - **Preface Paradox** ([14],[4]). Let $\mathbf{B} \subset \mathfrak{B}$ be the set containing *all* of your *reasonable* (1st-order) beliefs. This **B** is an incredibly rich and complex set of judgments. You're fallible (*i.e.*, your 1st-order evidence is *sometimes misleading*). So, it seems reasonable to believe that *some* B's in **B** are false. However, adding *this* (2nd-order) belief to **B** renders \mathfrak{B} *inconsistent*.

- Typically, such "paradoxes" involve a *conflict* between a *consistency* requirement and an *evidential* requirement, which requires *believing what is evidentially supported*.
- There are various responses to such paradoxes.
- Some ([15], [13]) try to *maintain* consistency as a CR.
 - Such approaches tend to have implausible consequences about the nature of evidential support/reasonable belief.
- Some ([11], [4]) say there are no CRs (per se) for full belief.
 - These approaches have more plausible things to say about evidential support/reasonable belief, but they *give up* on trying to articulate coherence requirements for full belief.
- I (we) would suggest that such paradoxes indicate that the classical CR for full belief is *too strong*. What we need is an *alternative story* about coherence requirements.
 - Ideally, we want coherence requirements for full belief that are entailed by both alethic and evidential considerations.

• Typically, such "paradoxes" involve a *conflict* between a *consistency* requirement and an *evidential* requirement, which requires *believing what is evidentially supported*.

• There are various responses to such paradoxes.

- Some ([15], [13]) try to *maintain* consistency as a CR.
 - Such approaches tend to have implausible consequences about the nature of evidential support/reasonable belief.

• Some ([11], [4]) say there *are no CRs* (*per se*) for full belief.

- These approaches have more plausible things to say about evidential support/reasonable belief, but they *give up* on trying to articulate coherence requirements for full belief.
- I (we) would suggest that such paradoxes indicate that the classical CR for full belief is *too strong*. What we need is an *alternative story* about coherence requirements.
 - Ideally, we want coherence requirements for full belief that are entailed by *both alethic and evidential* considerations.

- Typically, such "paradoxes" involve a *conflict* between a *consistency* requirement and an *evidential* requirement, which requires *believing what is evidentially supported*.
- There are various responses to such paradoxes.
- Some ([15], [13]) try to *maintain* consistency as a CR.
 - Such approaches tend to have implausible consequences about the nature of evidential support/reasonable belief.

• Some ([11], [4]) say there *are no CRs* (*per se*) for full belief.

- These approaches have more plausible things to say about evidential support/reasonable belief, but they *give up* on trying to articulate coherence requirements for full belief.
- I (we) would suggest that such paradoxes indicate that the classical CR for full belief is *too strong*. What we need is an *alternative story* about coherence requirements.
 - Ideally, we want coherence requirements for full belief that are entailed by both alethic and evidential considerations.

- Typically, such "paradoxes" involve a *conflict* between a *consistency* requirement and an *evidential* requirement, which requires *believing what is evidentially supported*.
- There are various responses to such paradoxes.
- Some ([15], [13]) try to *maintain* consistency as a CR.
 - Such approaches tend to have implausible consequences about the nature of evidential support/reasonable belief.

• Some ([11], [4]) say there *are no CRs* (*per se*) for full belief.

- These approaches have more plausible things to say about evidential support/reasonable belief, but they *give up* on trying to articulate coherence requirements for full belief.
- I (we) would suggest that such paradoxes indicate that the classical CR for full belief is *too strong*. What we need is an *alternative story* about coherence requirements.
 - Ideally, we want coherence requirements for full belief that are entailed by both alethic and evidential considerations.

- Typically, such "paradoxes" involve a *conflict* between a *consistency* requirement and an *evidential* requirement, which requires *believing what is evidentially supported*.
- There are various responses to such paradoxes.
- Some ([15], [13]) try to *maintain* consistency as a CR.
 - Such approaches tend to have implausible consequences about the nature of evidential support/reasonable belief.

• Some ([11], [4]) say there *are no CRs* (*per se*) for full belief.

- These approaches have more plausible things to say about evidential support/reasonable belief, but they *give up* on trying to articulate coherence requirements for full belief.
- I (we) would suggest that such paradoxes indicate that the classical CR for full belief is *too strong*. What we need is an *alternative story* about coherence requirements.

Ideally, we want coherence requirements for full belief that are entailed by *both alethic and evidential* considerations.

- Typically, such "paradoxes" involve a *conflict* between a *consistency* requirement and an *evidential* requirement, which requires *believing what is evidentially supported*.
- There are various responses to such paradoxes.
- Some ([15], [13]) try to *maintain* consistency as a CR.
 - Such approaches tend to have implausible consequences about the nature of evidential support/reasonable belief.

• Some ([11], [4]) say there *are no CRs* (*per se*) for full belief.

- These approaches have more plausible things to say about evidential support/reasonable belief, but they *give up* on trying to articulate coherence requirements for full belief.
- I (we) would suggest that such paradoxes indicate that the classical CR for full belief is *too strong*. What we need is an *alternative story* about coherence requirements.

Ideally, we want coherence requirements for full belief that are entailed by *both alethic and evidential* considerations.

- Typically, such "paradoxes" involve a *conflict* between a *consistency* requirement and an *evidential* requirement, which requires *believing what is evidentially supported*.
- There are various responses to such paradoxes.
- Some ([15], [13]) try to *maintain* consistency as a CR.
 - Such approaches tend to have implausible consequences about the nature of evidential support/reasonable belief.

• Some ([11], [4]) say there *are no CRs* (*per se*) for full belief.

- These approaches have more plausible things to say about evidential support/reasonable belief, but they *give up* on trying to articulate coherence requirements for full belief.
- I (we) would suggest that such paradoxes indicate that the classical CR for full belief is *too strong*. What we need is an *alternative story* about coherence requirements.

Iteally, we want coherence requirements for full belief that are entailed by *both alethic and evidential* considerations.

- Typically, such "paradoxes" involve a *conflict* between a *consistency* requirement and an *evidential* requirement, which requires *believing what is evidentially supported*.
- There are various responses to such paradoxes.
- Some ([15], [13]) try to *maintain* consistency as a CR.
 - Such approaches tend to have implausible consequences about the nature of evidential support/reasonable belief.
- Some ([11], [4]) say there *are no CRs* (*per se*) for full belief.
 - These approaches have more plausible things to say about evidential support/reasonable belief, but they *give up* on trying to articulate coherence requirements for full belief.
- I (we) would suggest that such paradoxes indicate that the classical CR for full belief is *too strong*. What we need is an *alternative story* about coherence requirements.
 - Iteally, we want coherence requirements for full belief that are entailed by *both alethic and evidential* considerations.

• For simplicity, we'll adopt a very elementary formal model.

- For each proposition *p* in some finite Boolean algebra *B*, *S* will be such that *either B*(*p*) or *D*(*p*) *and not both*.
- To make things *really* simple, we'll assume $D(p) \equiv B(\neg p)$.
- Finally, we'll use **3** to denote the *entire* set of judgments (beliefs and disbeliefs) made by *S* over the *full* algebra *B*.
- With this background in place, applying our new framework to full belief involves going through the following *3 steps*.
- Step 1: Define the vindicated (viz., perfectly accurate) judgment set, at w. ["Judgments of the omniscient S at w."]

• $\mathring{\mathcal{B}}_w$ contains B(p) [D(p)] iff p is true (false) at w.

- Step 2: Define a notion of "distance between B and B_w". That is, a measure of *distance from vindication* d(B,B_w).
 - $d(\mathfrak{B}, \mathfrak{B}_w) \cong$ the number of inaccurate judgments in \mathfrak{B} at w.
- Step 3: Adopt a fundamental principle (of epistemic decision theory) that uses d(𝔅, 𝔅_w) to ground a CR for 𝔅.

- For simplicity, we'll adopt a very elementary formal model.
 - For each proposition *p* in some finite Boolean algebra *B*, *S* will be such that *either B*(*p*) or *D*(*p*) *and not both*.
 - To make things *really* simple, we'll assume $D(p) \equiv B(\neg p)$.
 - Finally, we'll use **3** to denote the *entire* set of judgments (beliefs and disbeliefs) made by *S* over the *full* algebra *B*.
- With this background in place, applying our new framework to full belief involves going through the following *3 steps*.
- Step 1: Define the vindicated (viz., perfectly accurate) judgment set, at w. ["Judgments of the omniscient S at w."]

- Step 2: Define a notion of "distance between B and B_w". That is, a measure of *distance from vindication* d(B, B_w).
 - $d(\mathfrak{B}, \mathfrak{B}_w) \cong$ the number of inaccurate judgments in \mathfrak{B} at w.
- Step 3: Adopt a fundamental principle (of epistemic decision theory) that uses d(𝔅, 𝔅_w) to ground a CR for 𝔅.

Stage-Setting	The Framework	New Coherence Requirements for 33
	••	

- For simplicity, we'll adopt a very elementary formal model.
 - For each proposition *p* in some finite Boolean algebra *B*, *S* will be such that *either B*(*p*) or *D*(*p*) *and not both*.
 - To make things *really* simple, we'll assume $D(p) \equiv B(\neg p)$.
 - Finally, we'll use **3** to denote the *entire* set of judgments (beliefs and disbeliefs) made by *S* over the *full* algebra *B*.
- With this background in place, applying our new framework to full belief involves going through the following *3 steps*.
- Step 1: Define the *vindicated* (*viz., perfectly accurate*) *judgment set*, at *w*. ["Judgments of the omniscient S at *w*."]

- Step 2: Define a notion of "distance between B and B_w". That is, a measure of *distance from vindication* d(B, B_w).
 - $d(\mathfrak{B}, \dot{\mathfrak{B}}_w) \cong$ the number of inaccurate judgments in \mathfrak{B} at w.
- Step 3: Adopt a fundamental principle (of epistemic decision theory) that uses d(𝔅, 𝔅_w) to ground a CR for 𝔅.

Stage-Setting	The Framework	New Coherence Requirements for B
	0	

- For simplicity, we'll adopt a very elementary formal model.
 - For each proposition *p* in some finite Boolean algebra *B*, *S* will be such that *either B*(*p*) or *D*(*p*) *and not both*.
 - To make things *really* simple, we'll assume $D(p) \equiv B(\neg p)$.
 - Finally, we'll use \mathfrak{B} to denote the *entire* set of judgments (beliefs and disbeliefs) made by *S* over the *full* algebra \mathcal{B} .
- With this background in place, applying our new framework to full belief involves going through the following *3 steps*.
- **Step 1**: Define the *vindicated* (*viz., perfectly accurate*) *judgment set*, at *w*. ["Judgments of the omniscient *S* at *w*."]

- Step 2: Define a notion of "distance between B and B_w". That is, a measure of *distance from vindication* d(B, B_w).
 - $d(\mathfrak{B}, \dot{\mathfrak{B}}_w) \cong$ the number of inaccurate judgments in \mathfrak{B} at w.
- Step 3: Adopt a fundamental principle (of epistemic decision theory) that uses $d(\mathfrak{B}, \dot{\mathfrak{B}}_w)$ to ground a CR for \mathfrak{B} .

Stage-Setting	The Framework	New Coherence Requirements for B
	$\odot \circ$	

- For simplicity, we'll adopt a very elementary formal model.
 - For each proposition *p* in some finite Boolean algebra *B*, *S* will be such that *either B*(*p*) or *D*(*p*) *and not both*.
 - To make things *really* simple, we'll assume $D(p) \equiv B(\neg p)$.
 - Finally, we'll use \mathfrak{B} to denote the *entire* set of judgments (beliefs and disbeliefs) made by *S* over the *full* algebra \mathcal{B} .
- With this background in place, applying our new framework to full belief involves going through the following *3 steps*.
- Step 1: Define the *vindicated (viz., perfectly accurate) judgment set*, at *w*. ["Judgments of the omniscient *S* at *w*."]
 Ž_w contains *B(p)* [*D(p)*] iff *p* is true (false) at *w*.
- **Step 2**: Define a notion of "distance between \mathfrak{B} and \mathfrak{B}_w ". That is, a measure of *distance from vindication* $d(\mathfrak{B}, \mathfrak{B}_w)$.
 - $d(\mathfrak{B}, \dot{\mathfrak{B}}_w) \cong$ the number of inaccurate judgments in \mathfrak{B} at w.
- Step 3: Adopt a fundamental principle (of epistemic decision theory) that uses d(𝔅, 𝔅_w) to ground a CR for 𝔅.

Stage-Setting	The Framework	New Coherence Requirements for B
	00	

- For simplicity, we'll adopt a very elementary formal model.
 - For each proposition *p* in some finite Boolean algebra *B*, *S* will be such that *either B*(*p*) or *D*(*p*) *and not both*.
 - To make things *really* simple, we'll assume $D(p) \equiv B(\neg p)$.
 - Finally, we'll use \mathfrak{B} to denote the *entire* set of judgments (beliefs and disbeliefs) made by *S* over the *full* algebra \mathcal{B} .
- With this background in place, applying our new framework to full belief involves going through the following *3 steps*.
- **Step 1**: Define the *vindicated* (*viz., perfectly accurate*) *judgment set*, at *w*. ["Judgments of the omniscient *S* at *w*."]

- **Step 2**: Define a notion of "distance between \mathfrak{B} and \mathfrak{B}_w ". That is, a measure of *distance from vindication* $d(\mathfrak{B}, \mathfrak{B}_w)$.
 - $d(\mathfrak{B}, \mathfrak{B}_w) \cong$ the number of inaccurate judgments in \mathfrak{B} at w.
- Step 3: Adopt a fundamental principle (of epistemic decision theory) that uses d(𝔅, 𝔅_w) to ground a CR for 𝔅.

Stage-Setting	The Framework	New Coherence Requirements for B
	••	

- For simplicity, we'll adopt a very elementary formal model.
 - For each proposition *p* in some finite Boolean algebra *B*, *S* will be such that *either B*(*p*) or *D*(*p*) *and not both*.
 - To make things *really* simple, we'll assume $D(p) \equiv B(\neg p)$.
 - Finally, we'll use \mathfrak{B} to denote the *entire* set of judgments (beliefs and disbeliefs) made by *S* over the *full* algebra \mathcal{B} .
- With this background in place, applying our new framework to full belief involves going through the following *3 steps*.
- **Step 1**: Define the *vindicated* (*viz., perfectly accurate*) *judgment set*, at *w*. ["Judgments of the omniscient *S* at *w*."]

• $\mathring{\mathcal{B}}_w$ contains B(p) [D(p)] iff p is true (false) at w.

- **Step 2**: Define a notion of "distance between \mathfrak{B} and \mathfrak{B}_w ". That is, a measure of *distance from vindication* $d(\mathfrak{B}, \mathfrak{B}_w)$.
 - $d(\mathfrak{B}, \mathfrak{B}_w) \cong$ the number of inaccurate judgments in \mathfrak{B} at w.
- Step 3: Adopt a *fundamental principle* (of *epistemic decision theory*) that uses $d(\mathfrak{B}, \mathfrak{B}_w)$ to ground a CR for \mathfrak{B} .

Stage-Setting	The Framework	New Coherence Requirements for B
	••	

- For simplicity, we'll adopt a very elementary formal model.
 - For each proposition *p* in some finite Boolean algebra *B*, *S* will be such that *either B*(*p*) or *D*(*p*) *and not both*.
 - To make things *really* simple, we'll assume $D(p) \equiv B(\neg p)$.
 - Finally, we'll use \mathfrak{B} to denote the *entire* set of judgments (beliefs and disbeliefs) made by *S* over the *full* algebra \mathcal{B} .
- With this background in place, applying our new framework to full belief involves going through the following *3 steps*.
- **Step 1**: Define the *vindicated* (*viz., perfectly accurate*) *judgment set*, at *w*. ["Judgments of the omniscient *S* at *w*."]

• **Step 2**: Define a notion of "distance between \mathfrak{B} and \mathfrak{B}_w ". That is, a measure of *distance from vindication* $d(\mathfrak{B}, \mathfrak{B}_w)$.

• $d(\mathfrak{B}, \mathfrak{B}_w) \cong$ the number of inaccurate judgments in \mathfrak{B} at w.

• Step 3: Adopt a *fundamental principle* (of *epistemic decision theory*) that uses $d(\mathfrak{B}, \mathfrak{B}_w)$ to ground a CR for \mathfrak{B} .

Stage-Setting	The Framework	New Coherence Requirements for B
	••	

- For simplicity, we'll adopt a very elementary formal model.
 - For each proposition *p* in some finite Boolean algebra *B*, *S* will be such that *either B*(*p*) or *D*(*p*) *and not both*.
 - To make things *really* simple, we'll assume $D(p) \equiv B(\neg p)$.
 - Finally, we'll use \mathfrak{B} to denote the *entire* set of judgments (beliefs and disbeliefs) made by *S* over the *full* algebra \mathcal{B} .
- With this background in place, applying our new framework to full belief involves going through the following *3 steps*.
- **Step 1**: Define the *vindicated* (*viz., perfectly accurate*) *judgment set*, at *w*. ["Judgments of the omniscient *S* at *w*."]

- **Step 2**: Define a notion of "distance between \mathfrak{B} and \mathfrak{B}_w ". That is, a measure of *distance from vindication* $d(\mathfrak{B}, \mathfrak{B}_w)$.
 - $d(\mathfrak{B}, \mathfrak{B}_w) \cong$ the number of inaccurate judgments in \mathfrak{B} at w.
- Step 3: Adopt a *fundamental principle* (of *epistemic decision theory*) that uses $d(\mathfrak{B}, \mathfrak{B}_w)$ to ground a CR for \mathfrak{B} .

Stage-Setting	The Framework	New Coherence Requirements for 33
	00	

- For simplicity, we'll adopt a very elementary formal model.
 - For each proposition *p* in some finite Boolean algebra *B*, *S* will be such that *either B*(*p*) or *D*(*p*) *and not both*.
 - To make things *really* simple, we'll assume $D(p) \equiv B(\neg p)$.
 - Finally, we'll use \mathfrak{B} to denote the *entire* set of judgments (beliefs and disbeliefs) made by *S* over the *full* algebra \mathcal{B} .
- With this background in place, applying our new framework to full belief involves going through the following *3 steps*.
- **Step 1**: Define the *vindicated* (*viz., perfectly accurate*) *judgment set*, at *w*. ["Judgments of the omniscient *S* at *w*."]

• **Step 2**: Define a notion of "distance between \mathfrak{B} and \mathfrak{B}_w ". That is, a measure of *distance from vindication* $d(\mathfrak{B}, \mathfrak{B}_w)$.

• $d(\mathfrak{B}, \mathfrak{B}_w) \cong$ the number of inaccurate judgments in \mathfrak{B} at w.

• Step 3: Adopt a *fundamental principle* (of *epistemic decision theory*) that uses $d(\mathfrak{B}, \mathring{\mathfrak{B}}_w)$ to ground a CR for \mathfrak{B} .

Possible Vindication (PV). There exists *some* possible world w at which *all* of the judgments in \mathfrak{B} are accurate. Or, to put this more formally in terms of d: $(\exists w)[d(\mathfrak{B}, \mathring{\mathfrak{B}}_w) = 0]$.

- Possible vindication is *one way* we could go here. But, our framework is *much more general* than the classical one. It allows for *many other* choices of fundamental principle.
- Inspired by the work of de Finetti [5] and Joyce [10], we can *back away* from (PV) to something weaker, but still probative *the avoidance of (weak) dominance in d*(B, B_w).

Weak Accuracy-Dominance Avoidance (WADA).

There does *not* exist an alternative belief set \mathfrak{B}' such that: (i) $(\forall w) [d(\mathfrak{B}', \mathring{\mathfrak{B}}_w) \le d(\mathfrak{B}, \mathring{\mathfrak{B}}_w)]$, and

 $(\exists w) [d(\mathfrak{B}',\mathfrak{B}_w) < d(\mathfrak{B},\mathfrak{B}_w)]$

Completing Step 3 in this way leads to a new CR for 3.

Possible Vindication (PV). There exists *some* possible world w at which *all* of the judgments in \mathfrak{B} are accurate. Or, to put this more formally in terms of d: $(\exists w)[d(\mathfrak{B}, \mathring{\mathfrak{B}}_w) = 0]$.

- Possible vindication is *one way* we could go here. But, our framework is *much more general* than the classical one. It allows for *many other* choices of fundamental principle.
- Inspired by the work of de Finetti [5] and Joyce [10], we can *back away* from (PV) to something weaker, but still probative *the avoidance of (weak) dominance in d*(B, B_w).

Weak Accuracy-Dominance Avoidance (WADA).

There does *not* exist an alternative belief set \mathfrak{B}' such that: (i) $(\forall w) [d(\mathfrak{B}', \mathring{\mathfrak{B}}_w) \leq d(\mathfrak{B}, \mathring{\mathfrak{B}}_w)]$, and

(ii) $(\exists w)[d(\mathfrak{B}',\mathfrak{B}_w) < d(\mathfrak{B},\mathfrak{B}_w)].$

Completing Step 3 in this way leads to a new CR for 3.

Possible Vindication (PV). There exists *some* possible world w at which *all* of the judgments in \mathfrak{B} are accurate. Or, to put this more formally in terms of d: $(\exists w)[d(\mathfrak{B}, \mathfrak{B}_w) = 0]$.

- Possible vindication is *one way* we could go here. But, our framework is *much more general* than the classical one. It allows for *many other* choices of fundamental principle.
- Inspired by the work of de Finetti [5] and Joyce [10], we can *back away* from (PV) to something weaker, but still probative *the avoidance of (weak) dominance in d*(B, B_w).

Weak Accuracy-Dominance Avoidance (WADA).

There does *not* exist an alternative belief set \mathfrak{B}' such that: (i) $(\forall w) [d(\mathfrak{B}', \mathring{\mathfrak{B}}_w) \leq d(\mathfrak{B}, \mathring{\mathfrak{B}}_w)]$, and

(ii) $(\exists w)[d(\mathfrak{B}',\mathfrak{B}_w) < d(\mathfrak{B},\mathfrak{B}_w)].$

• Completing Step 3 in this way leads to a new CR for 33.

Possible Vindication (PV). There exists *some* possible world w at which *all* of the judgments in \mathfrak{B} are accurate. Or, to put this more formally in terms of d: $(\exists w)[d(\mathfrak{B}, \mathfrak{B}_w) = 0]$.

- Possible vindication is *one way* we could go here. But, our framework is *much more general* than the classical one. It allows for *many other* choices of fundamental principle.
- Inspired by the work of de Finetti [5] and Joyce [10], we can *back away* from (PV) to something weaker, but still probative *the avoidance of (weak) dominance in d*(B, B_w).

Weak Accuracy-Dominance Avoidance (WADA).

There does *not* exist an alternative belief set \mathfrak{B}' such that: (i) $(\forall w) [d(\mathfrak{B}', \mathring{\mathfrak{B}}_w) \leq d(\mathfrak{B}, \mathring{\mathfrak{B}}_w)]$, and

(ii) $(\exists w) [d(\mathfrak{B}', \mathfrak{B}_w) < d(\mathfrak{B}, \mathfrak{B}_w)].$

• Completing Step 3 in *this* way leads to a *new* CR for **3**.

Possible Vindication (PV). There exists *some* possible world w at which *all* of the judgments in \mathfrak{B} are accurate. Or, to put this more formally in terms of d: $(\exists w)[d(\mathfrak{B}, \mathfrak{B}_w) = 0]$.

- Possible vindication is *one way* we could go here. But, our framework is *much more general* than the classical one. It allows for *many other* choices of fundamental principle.
- Inspired by the work of de Finetti [5] and Joyce [10], we can *back away* from (PV) to something weaker, but still probative *the avoidance of (weak) dominance in d*(B, B_w).

Weak Accuracy-Dominance Avoidance (WADA).

There does *not* exist an alternative belief set \mathfrak{B}' such that: (i) $(\forall w) [d(\mathfrak{B}', \mathring{\mathfrak{B}}_w) \leq d(\mathfrak{B}, \mathring{\mathfrak{B}}_w)]$, and (ii) $(\exists w) [d(\mathfrak{B}', \mathring{\mathfrak{B}}_w) < d(\mathfrak{B}, \mathring{\mathfrak{B}}_w)]$.

• Completing Step 3 in *this* way leads to a *new* CR for **3**.

Possible Vindication (PV). There exists *some* possible world w at which *all* of the judgments in \mathfrak{B} are accurate. Or, to put this more formally in terms of d: $(\exists w)[d(\mathfrak{B}, \mathfrak{B}_w) = 0]$.

- Possible vindication is *one way* we could go here. But, our framework is *much more general* than the classical one. It allows for *many other* choices of fundamental principle.
- Inspired by the work of de Finetti [5] and Joyce [10], we can *back away* from (PV) to something weaker, but still probative *the avoidance of (weak) dominance in d*(B, B_w).

Weak Accuracy-Dominance Avoidance (WADA).

There does *not* exist an alternative belief set \mathfrak{B}' such that: (i) $(\forall w) [d(\mathfrak{B}', \mathring{\mathfrak{B}}_w) \leq d(\mathfrak{B}, \mathring{\mathfrak{B}}_w)]$, and (ii) $(\exists w) [d(\mathfrak{B}', \mathring{\mathfrak{B}}_w) < d(\mathfrak{B}, \mathring{\mathfrak{B}}_w)]$.

• Completing Step 3 in *this* way leads to a *new* CR for **B**.

- The new coherence requirement implied by this application of our framework has just the sort of properties we wanted.
- We wanted a coherence requirement that (like consistency) was motivated by considerations of accuracy (ideally, *entailed by* alethic requirements such as consistency/PV).
- But, we also wanted a coherence requirement that was *strictly weaker* than deductive consistency in such a way that it is *also entailed by our evidential requirements*.
- Happily, it can be shown that we have met both of these *desiderata*, provided that we accept the following weak assumption about our evidential requirements.
 - Evidential Requirement for Belief (EB). An agent S (with total evidence E_S) meets her evidential requirements only if there exists some Pr-function [Pr(+|E_S)] which probabilifies each of her beliefs and dis-probabilifies each of her disbeliefs.
- There is disagreement about which Pr(· | E_S) should do the (dis)probabilifying [3, 16, 8], but there is agreement on (EB)

- The new coherence requirement implied by this application of our framework has just the sort of properties we wanted.
- We wanted a coherence requirement that (like consistency) was motivated by considerations of accuracy (ideally, *entailed by* alethic requirements such as consistency/PV).
- But, we also wanted a coherence requirement that was *strictly weaker* than deductive consistency in such a way that it is *also entailed by our evidential requirements*.
- Happily, it can be shown that we have met both of these *desiderata*, provided that we accept the following weak assumption about our evidential requirements.
 - Evidential Requirement for Belief (EB). An agent *S* (with total evidence E_S) meets her evidential requirements *only if* there exists *some* Pr-function [Pr($\cdot | E_S$)] which *probabilifies each of her beliefs and dis-probabilifies each of her disbeliefs.*
- There is disagreement about which Pr(· | E_S) should do the (dis)probabilifying [3, 16, 8], but there is agreement on (EB).

- The new coherence requirement implied by this application of our framework has just the sort of properties we wanted.
- We wanted a coherence requirement that (like consistency) was motivated by considerations of accuracy (ideally, *entailed by* alethic requirements such as consistency/PV).
- But, we also wanted a coherence requirement that was *strictly weaker* than deductive consistency in such a way that it is *also entailed by our evidential requirements*.
- Happily, it can be shown that we have met both of these *desiderata*, provided that we accept the following weak assumption about our evidential requirements.
 - Evidential Requirement for Belief (EB). An agent *S* (with total evidence E_S) meets her evidential requirements *only if* there exists *some* Pr-function [Pr($\cdot | E_S$)] which *probabilifies each of her beliefs and dis-probabilifies each of her disbeliefs.*
- There is disagreement about *which* Pr(· | *E_S*) should do the (dis)probabilifying [3, 16, 8], but there is agreement on (EB).

- The new coherence requirement implied by this application of our framework has just the sort of properties we wanted.
- We wanted a coherence requirement that (like consistency) was motivated by considerations of accuracy (ideally, *entailed by* alethic requirements such as consistency/PV).
- But, we also wanted a coherence requirement that was *strictly weaker* than deductive consistency in such a way that it is *also entailed by our evidential requirements*.
- Happily, it can be shown that we have met both of these *desiderata*, provided that we accept the following weak assumption about our evidential requirements.
 - Evidential Requirement for Belief (EB). An agent *S* (with total evidence E_S) meets her evidential requirements *only if* there exists *some* Pr-function [Pr($\cdot | E_S$)] which *probabilifies each of her beliefs and dis-probabilifies each of her disbeliefs.*
- There is disagreement about *which* $Pr(\cdot | E_S)$ should do the (dis)probabilifying [3, 16, 8], but there is agreement on (EB).

- The new coherence requirement implied by this application of our framework has just the sort of properties we wanted.
- We wanted a coherence requirement that (like consistency) was motivated by considerations of accuracy (ideally, *entailed by* alethic requirements such as consistency/PV).
- But, we also wanted a coherence requirement that was *strictly weaker* than deductive consistency in such a way that it is *also entailed by our evidential requirements*.
- Happily, it can be shown that we have met both of these *desiderata*, provided that we accept the following weak assumption about our evidential requirements.
 - Evidential Requirement for Belief (EB). An agent *S* (with total evidence E_S) meets her evidential requirements *only if* there exists *some* Pr-function [Pr($\cdot | E_S$)] which *probabilifies each of her beliefs and dis-probabilifies each of her disbeliefs.*
- There is disagreement about *which* $Pr(\cdot | E_S)$ should do the (dis)probabilifying [3, 16, 8], but there is agreement on (EB).

- The new coherence requirement implied by this application of our framework has just the sort of properties we wanted.
- We wanted a coherence requirement that (like consistency) was motivated by considerations of accuracy (ideally, *entailed by* alethic requirements such as consistency/PV).
- But, we also wanted a coherence requirement that was *strictly weaker* than deductive consistency in such a way that it is *also entailed by our evidential requirements*.
- Happily, it can be shown that we have met both of these *desiderata*, provided that we accept the following weak assumption about our evidential requirements.
 - Evidential Requirement for Belief (EB). An agent *S* (with total evidence E_S) meets her evidential requirements *only if* there exists *some* Pr-function [Pr($\cdot | E_S$)] which *probabilifies each of her beliefs and dis-probabilifies each of her disbeliefs.*
- There is disagreement about *which* $Pr(\cdot | E_S)$ should do the (dis)probabilifying [3, 16, 8], but there is agreement on (EB).

-Setting		The Framework 00	New Coherence Requiremen ○●	its for 33
۲	• Here are the logical relationships between key norms:			
		The Truth Norm fo	or Belief:	(TB) ↓ ∦

tting	The Framework 00	New Coherence Requiremen ○●	nts for B
• He	• Here are the logical relationships between key norms:		
	The Truth Norm fo	or Belief:	(TB) ↓ ∦

ting		The Framework 00	New Coherence Requiremer ○●	nts for 23
•	• Here are the logical relationships between key no			norms:
		The Truth Norm fo	or Belief:	(TB) ↓ ∱

ing		The Framework oo	New Coherence Requiremer ○●	nts for 33
•	Here	e are the logical relatio	nships between key	norms:
		The Truth Norm for 1	3elief:	(TB) ↓ ∳
		Possible Vindication	(<i>viz.</i> , consistency):	(PV) ↓ ∦

age-Setting 00	The Framework 00	New Coherence Requireme ○●	nts for 33
• He	ere are the logical relat	ionships between key	norms:
	The Truth Norm fo	r Belief:	(TB)
	Possible Vindicatio	n (<i>viz.</i> , consistency):	↓ ∱ (PV) ↓ ∱

age-Setting 00		The Framework 00	New Coherence Requiremen ○●	its for 33
۲	Here	are the logical relations	hips between key	norms:
		The Truth Norm for Bel	ief:	(TB)
		Possible Vindication (vi	z., consistency):	↓ ∲ (PV) ↓ ∳

age-Setting 00	The Framework 00	New C ○●	Coherence Requirement	nts for B
• Here	are the logical rela	ationships	between key	norms:
	The Truth Norm f	or Belief:		(TB)
	Possible Vindicati	on (<i>viz.</i> , co	onsistency):	↓ γ [†]
R?	Weak Accuracy-De	ominance A	Avoidance:	(WADA)

tage-Setting	The Framework oo	New Coherence Requiremen ○●	ts for B
9	• Here are the logical relationships between key norms:		
	The Truth Norm fo	or Belief:	(TB)
	Possible Vindicatio	on (<i>viz.</i> , consistency):	↓ ↑ (PV)
	🕼 Weak Accuracy-Do	minance Avoidance:	₩ ∯ (WADA)
			1 ↓

tage-Setting 00	The Framework New Coherence ○○ ○●	e Requirements for 3
• He	re are the logical relationships betw	een key norms:
	The Truth Norm for Belief:	(TB)
	Possible Vindication (<i>viz.</i> , consist	↓ ∦ ency): (PV) ↓ ∦
R ³	Weak Accuracy-Dominance Avoid	lance: (WADA)
		↑ ¥ (EB)

tage-Setting 900	The Framework 00	New Coherence Requiremen ○●	nts for B
• Her	e are the logical relati	onships between key	norms:
	The Truth Norm for	Belief:	(TB)
	Possible Vindication	ı (<i>viz.</i> , consistency):	ψη (PV) ψη∕
ß	Weak Accuracy-Don	ninance Avoidance:	(WADA)
	Evidential Requirem	ent for Belief:	↑ ¥ (EB)

age-Setting 00	The Framework 00	New Coherence Requiremen ○●	nts for B
• He	ere are the logical relat	ionships between key	norms:
	The Truth Norm fo	r Belief:	(TB)
	Possible Vindicatio	n (<i>viz.</i> , consistency):	(PV) ↓ 1∕r
ß	> Weak Accuracy-Do	minance Avoidance:	(WADA)
	Evidential Requirer	nent for Belief:	1r ∳ (EB)

age-Setting oo	The Framework 00	New Coherence Requiremer ○●	nts for B
• He	re are the logical rela	tionships between key	norms:
	The Truth Norm fo	r Belief:	(TB) ↓ ∦
	Possible Vindicatio	n (<i>viz.</i> , consistency):	(PV) ↓ ∦
ß	Weak Accuracy-Do	minance Avoidance:	(WADA)
	Evidential Requirer	nent for Belief:	↑ ¥ (EB)

ge-Setting o	The Framework 00	New Coherence Requiremer ○●	nts for B
• Her	e are the logical rela	tionships between key	norms:
	The Truth Norm fo	or Belief:	(TB) ↓ 1∕r
	Possible Vindicatio	on (<i>viz.</i> , consistency):	(PV) ↓ ∦
ß	Weak Accuracy-Do	minance Avoidance:	(WADA)
	Evidential Require	ment for Belief:	1⊧ ∳ (EB)

				_
Stage-Setting	The Framework	New Coherence Requirements for B		Rei
000	oo	00		

- [1] K. Easwaran and B. Fitelson, Accuracy, Coherence & Evidence, in progress, 2012.
- [2] _____, An "Evidentialist" Worry about Joyce's Argument for Probabilism, Dialectica, to appear, 2012.
- [3] R. Carnap, Logical Foundations of Probability, U. of Chicago, 2nd ed., 1962.
- [4] D. Christensen, Putting Logic in its Place, OUP, 2007.
- [5] B. de Finetti, The Theory of Probability, Wiley, 1974.
- [6] I. Douven and T. Williamson, Generalizing the Lottery Paradox, BJPS, 2006.
- [7] B. Fitelson and D. McCarthy, *Steps Toward a New Foundation for Subjective Probability*, in progress, 2012.
- [8] R. Fumerton, Metaepistemology and Skepticism, Rowman & Littlefield, 1995.
- [9] J. Joyce, Accuracy and Coherence: Prospects for an Alethic Epistemology of Partial Belief, in F. Huber and C. Schmidt-Petri (eds.), Degrees of Belief, 2009.
- [10] _____, A Nonpragmatic Vindication of Probabilism, Philosophy of Science, 1998.
- [11] N. Kolodny, How Does Coherence Matter?, Proc. of the Aristotelian Society, 2007.
- [12] H. Kyburg, Probability and the Logic of Belief, Wesleyan, 1961.
- [13] H. Leitgeb, Reducing Belief Simpliciter to Degrees of Belief, manuscript, 2010.
- [14] D. Makinson, The Paradox of the Preface, Analysis, 1965.
- [15] J. Pollock, The Paradox of the Preface, Philosophy of Science, 1986.
- [16] T. Williamson, Knowledge and its Limits, Oxford University Press, 2000.