Round Table on Coherence (Part II)

Branden Fitelson¹

Department of Philosophy Rutgers University

&

Munich Center for Mathematical Philosophy Ludwig-Maximilians-Universität München

branden@fitelson.org
http://fitelson.org/

¹These slides include joint work with Daniel Berntson (Princeton), Rachael Briggs (ANU), Fabrizio Cariani (NU), Kenny Easwaran (USC), and David McCarthy (HKU). Please do not cite or quote without permission.

- We saw in Part I that using only considerations of accuracy and dominance — our framework yielded a coherence requirement for 3 that is entailed by (EB).
- In this (critical) Part II, I will explain why we think there is an "evidential gap" in Joycean arguments for probabilism.
- As Richard explained, the typical way to go through the "3 Steps" for credence involves the following choices:
 - **Step 1**: define the *vindicated* set of credences at a world w (\mathring{b}_w). We agree that \mathring{b}_w assigns 1 to the truths at w and 0 to the falsehoods at w [\mathring{b}_w *matches the indicator function* v_w].
 - **Step 2**: define distance $[\delta(\hat{b}, \hat{b}_w)]$ between a credal set \hat{b} and \hat{b}_w . I'll discuss Joyce's [9] argument for *Euclidean distance*.
 - Step 3: choose a fundamental principle (of epistemic decision theory) which uses $\delta(\mathfrak{b}, \tilde{\mathfrak{b}}_w)$ to ground a CR for \mathfrak{b} . [Dominance is typical. Richard has new principle as well.]
- As Richard explained, these choices imply b-probabilism as a CR for credal sets. But we [1] are not quite convinced.

- We saw in Part I that using only considerations of accuracy and dominance — our framework yielded a coherence requirement for 3 that is entailed by (EB).
- In this (critical) Part II, I will explain why we think there is an "evidential gap" in Joycean arguments for probabilism.
- As Richard explained, the typical way to go through the "3 Steps" for credence involves the following choices:
 - **Step 1**: define the *vindicated* set of credences at a world w (\mathring{b}_w). We agree that \mathring{b}_w assigns 1 to the truths at w and 0 to the falsehoods at w [\mathring{b}_w matches the indicator function v_w].
 - **Step 2**: define distance $[\delta(\beta, \beta_w)]$ between a credal set β and $\dot{\beta}_w$. I'll discuss Joyce's [9] argument for *Euclidean distance*.
 - Step 3: choose a fundamental principle (of epistemic decision theory) which uses $\delta(\mathfrak{b}, \mathfrak{b}_w)$ to ground a CR for \mathfrak{b} . [Dominance is typical. Richard has new principle as well.]
- As Richard explained, these choices imply β-probabilism as

- We saw in Part I that using only considerations of accuracy and dominance — our framework yielded a coherence requirement for 3 that is entailed by (EB).
- In this (critical) Part II, I will explain why we think there is an "evidential gap" in Joycean arguments for probabilism.
- As Richard explained, the typical way to go through the "3 Steps" for credence involves the following choices:
 - **Step 1:** define the *vindicated* set of credences at a world w (\mathring{b}_w). We agree that \mathring{b}_w assigns 1 to the truths at w and 0 to the falsehoods at w [\mathring{b}_w matches the indicator function v_w].
 - **Step 2**: define distance $[\delta(\beta, \beta_w)]$ between a credal set β and β_w . I'll discuss Joyce's [9] argument for *Euclidean distance*.
 - **Step 3**: choose a fundamental principle (of epistemic decision theory) which uses $\delta(\beta, \dot{\beta}_w)$ to ground a CR for β . [Dominance is typical. Richard has new principle as well.]
- As Richard explained, these choices imply b-probabilism as
 CR for credal sets. But we fill are not quite convinced.

- We saw in Part I that using only considerations of accuracy and dominance — our framework yielded a coherence requirement for 3 that is entailed by (EB).
- In this (critical) Part II, I will explain why we think there is an "evidential gap" in Joycean arguments for probabilism.
- As Richard explained, the typical way to go through the "3 Steps" for credence involves the following choices:
 - **Step 1:** define the *vindicated* set of credences at a world w ($\mathring{\mathbf{b}}_w$). We agree that $\mathring{\mathbf{b}}_w$ assigns 1 to the truths at w and 0 to the falsehoods at w [$\mathring{\mathbf{b}}_w$ *matches the indicator function* v_w].
 - **Step 2**: define distance $[\delta(\beta, \beta_w)]$ between a credal set β and β_w . I'll discuss Joyce's [9] argument for *Euclidean distance*.
 - **Step 3**: choose a *fundamental principle* (of *epistemic decision theory*) which uses $\delta(\beta, \mathring{\beta}_w)$ to ground a CR for β . [*Dominance* is typical. Richard has new principle as well.]
- As Richard explained, these choices imply *6-probabilism* as a CR for credal sets. But, we [1] are not quite convinced.

- We saw in Part I that using only considerations of accuracy and dominance — our framework yielded a coherence requirement for 25 that is entailed by (EB).
- In this (critical) Part II, I will explain why we think there is an "evidential gap" in Joycean arguments for probabilism.
- As Richard explained, the typical way to go through the "3 Steps" for credence involves the following choices:
 - **Step 1:** define the *vindicated* set of credences at a world w ($\mathring{\mathbf{b}}_w$). We agree that $\mathring{\mathbf{b}}_w$ assigns 1 to the truths at w and 0 to the falsehoods at w [$\mathring{\mathbf{b}}_w$ *matches the indicator function* v_w].
 - **Step 2**: define distance $[\delta(\hat{\mathfrak{b}}, \hat{\mathfrak{b}}_w)]$ between a credal set $\hat{\mathfrak{b}}$ and $\hat{\mathfrak{b}}_w$. I'll discuss Joyce's [9] argument for *Euclidean distance*.
 - **Step 3**: choose a *fundamental principle* (of *epistemic decision theory*) which uses $\delta(\beta, \mathring{\beta}_w)$ to ground a CR for β . [*Dominance* is typical. Richard has new principle as well.]
- As Richard explained, these choices imply β-probabilism as a CR for credal sets. But, we [1] are not quite convinced.

- We saw in Part I that using only considerations of accuracy and dominance — our framework yielded a coherence requirement for 3 that is entailed by (EB).
- In this (critical) Part II, I will explain why we think there is an "evidential gap" in Joycean arguments for probabilism.
- As Richard explained, the typical way to go through the "3 Steps" for credence involves the following choices:
 - **Step 1:** define the *vindicated* set of credences at a world w ($\mathring{\mathbf{b}}_w$). We agree that $\mathring{\mathbf{b}}_w$ assigns 1 to the truths at w and 0 to the falsehoods at w [$\mathring{\mathbf{b}}_w$ *matches the indicator function* v_w].
 - **Step 2**: define distance $[\delta(\hat{\mathfrak{b}}, \hat{\mathfrak{b}}_w)]$ between a credal set $\hat{\mathfrak{b}}$ and $\hat{\mathfrak{b}}_w$. I'll discuss Joyce's [9] argument for *Euclidean distance*.
 - **Step 3**: choose a *fundamental principle* (of *epistemic decision theory*) which uses $\delta(\mathfrak{b},\mathring{\mathfrak{b}}_w)$ to ground a CR for \mathfrak{b} . [*Dominance* is typical. Richard has new principle as well.]
- As Richard explained, these choices imply *β-probabilism* as a CR for credal sets. But, we [1] are not quite convinced.

- We saw in Part I that using only considerations of accuracy and dominance — our framework yielded a coherence requirement for 3 that is entailed by (EB).
- In this (critical) Part II, I will explain why we think there is an "evidential gap" in Joycean arguments for probabilism.
- As Richard explained, the typical way to go through the "3 Steps" for credence involves the following choices:
 - **Step 1:** define the *vindicated* set of credences at a world w ($\mathring{\mathbf{b}}_w$). We agree that $\mathring{\mathbf{b}}_w$ assigns 1 to the truths at w and 0 to the falsehoods at w [$\mathring{\mathbf{b}}_w$ *matches the indicator function* v_w].
 - **Step 2**: define distance $[\delta(\hat{\mathfrak{b}}, \hat{\mathfrak{b}}_w)]$ between a credal set $\hat{\mathfrak{b}}$ and $\hat{\mathfrak{b}}_w$. I'll discuss Joyce's [9] argument for *Euclidean distance*.
 - **Step 3**: choose a *fundamental principle* (of *epistemic decision theory*) which uses $\delta(\mathfrak{b}, \mathring{\mathfrak{b}}_w)$ to ground a CR for \mathfrak{b} . [*Dominance* is typical. Richard has new principle as well.]
- As Richard explained, these choices imply β-probabilism as a CR for credal sets. But, we [1] are not quite convinced.

• Consider the following two possible choices for δ :

- These measures *disagree radically* regarding the norms they entail *via accuracy-dominance* in our framework [15].
- Joyce [9] gives an interesting "evidentialist" argument for δ_2 (over δ_1). The argument concerns a specific, simple agent S.
- Let $P_i \cong$ a fair, 3-sided die comes up "i". Suppose S has the credal set $\mathfrak{b} = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$. And, suppose S knows **only** that the die is fair (i.e., S has no other P_i -relevant evidence).
- Joyce claims that such an S clearly has the "evidentially correct" credences. Here, Joyce appeals to an evidential requirement for credences: The Principal Principle (PP) [14]

- Consider the following two possible choices for δ :
 - $\bullet \ \delta_1(\mathfrak{b},\mathring{\mathfrak{b}}_w) \stackrel{\text{\tiny def}}{=} \sum_p |b(p) v_w(p)|$

•
$$\delta_2(\hat{\mathbf{b}}, \mathring{\mathbf{b}}_w) \stackrel{\text{def}}{=} \sqrt{\sum_p |b(p) - v_w(p)|^2}$$

- These measures *disagree radically* regarding the norms they entail *via accuracy-dominance* in our framework [15].
- Joyce [9] gives an interesting "evidentialist" argument for δ_2 (over δ_1). The argument concerns a specific, simple agent S.
- Let $P_i \cong$ a fair, 3-sided die comes up "i". Suppose S has the credal set $\mathfrak{b} = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$. And, suppose S knows only that the die is fair (i.e., S has no other P_i -relevant evidence).
- Joyce claims that such an *S* clearly has the "evidentially correct" credences. Here, Joyce appeals to an *evidential requirement* for credences: *The Principal Principle* (PP) [14]

- Consider the following two possible choices for δ :
 - $\bullet \ \delta_1(\hat{\mathfrak{b}}, \mathring{\hat{\mathfrak{b}}}_w) \stackrel{\text{def}}{=} \sum_p |b(p) v_w(p)|$
 - $\delta_2(\hat{\mathfrak{b}}, \mathring{\hat{\mathfrak{b}}}_w) \stackrel{\text{def}}{=} \sqrt{\sum_p |b(p) v_w(p)|^2}$
- These measures *disagree radically* regarding the norms they entail *via accuracy-dominance* in our framework [15].
- Joyce [9] gives an interesting "evidentialist" argument for δ_2 (over δ_1). The argument concerns a specific, simple agent S.
- Let $P_i \cong$ a fair, 3-sided die comes up "i". Suppose S has the credal set $\mathfrak{b} = \langle \frac{1}{3}, \frac{1}{3}, \frac{1}{3} \rangle$. And, suppose S knows **only** that the die is fair (i.e., S has no other P_i -relevant evidence).
- Joyce claims that such an *S* clearly has the "evidentially correct" credences. Here, Joyce appeals to an *evidential* requirement for credences: *The Principal Principle* (PP) [14]

- Consider the following two possible choices for δ :
 - $\delta_1(\hat{\mathfrak{b}}, \hat{\hat{\mathfrak{b}}}_w) \stackrel{\text{def}}{=} \sum_p |b(p) v_w(p)|$
 - $\delta_2(\hat{\mathfrak{b}}, \mathring{\hat{\mathfrak{b}}}_w) \stackrel{\text{def}}{=} \sqrt{\sum_p |b(p) v_w(p)|^2}$
- These measures *disagree radically* regarding the norms they entail *via accuracy-dominance* in our framework [15].
- Joyce [9] gives an interesting "evidentialist" argument for δ_2 (over δ_1). The argument concerns a specific, simple agent S.
- Let $P_i \cong$ a fair, 3-sided die comes up "i". Suppose S has the credal set $\mathfrak{b} = \langle \frac{1}{3}, \frac{1}{3}, \frac{1}{3} \rangle$. And, suppose S knows **only** that the die is fair (i.e., S has no other P_i -relevant evidence).
- Joyce claims that such an *S* clearly has the "evidentially correct" credences. Here, Joyce appeals to an *evidential requirement* for credences: *The Principal Principle* (PP) [14]

- Consider the following two possible choices for δ :
 - $\bullet \ \delta_1(\hat{\mathfrak{b}}, \mathring{\hat{\mathfrak{b}}}_w) \stackrel{\text{def}}{=} \sum_p |b(p) v_w(p)|$
 - $\delta_2(\hat{\mathfrak{b}}, \mathring{\hat{\mathfrak{b}}}_w) \stackrel{\text{def}}{=} \sqrt{\sum_p |b(p) v_w(p)|^2}$
- These measures *disagree radically* regarding the norms they entail *via accuracy-dominance* in our framework [15].
- Joyce [9] gives an interesting "evidentialist" argument for δ_2 (over δ_1). The argument concerns a specific, simple agent S.
- Let $P_i \stackrel{\text{def}}{=} a$ fair, 3-sided die comes up "i". Suppose S has the credal set $\mathfrak{b} = \langle \frac{1}{3}, \frac{1}{3}, \frac{1}{3} \rangle$. And, suppose S knows **only** that the die is fair (i.e., S has no other P_i -relevant evidence).
- Joyce claims that such an *S* clearly has the "evidentially correct" credences. Here, Joyce appeals to an *evidential requirement* for credences: *The Principal Principle* (PP) [14]

• So far, so good. But, bad news lurks for δ_1 ...

• Consider the following two possible choices for δ :

$$\bullet \ \delta_1(\hat{\mathbf{b}}, \mathring{\mathbf{b}}_w) \stackrel{\text{def}}{=} \sum_p |b(p) - v_w(p)|$$

$$\bullet \ \delta_2(\hat{\mathfrak{b}},\mathring{\hat{\mathfrak{b}}}_w) \stackrel{\text{\tiny def}}{=} \sqrt{\sum_p \big|b(p) - v_w(p)\big|^2}$$

- These measures *disagree radically* regarding the norms they entail via accuracy-dominance in our framework [15].
- Joyce [9] gives an interesting "evidentialist" argument for δ_2 (over δ_1). The argument concerns a specific, simple agent *S*.
- Let $P_i \stackrel{\text{def}}{=}$ a fair, 3-sided die comes up "i". Suppose S has the credal set $\mathfrak{b} = \langle \frac{1}{3}, \frac{1}{3}, \frac{1}{3} \rangle$. And, suppose *S* knows **only** that the die is fair (i.e., S has no other P_i -relevant evidence).
- Joyce claims that such an S clearly has the "evidentially

- Consider the following two possible choices for δ :
 - $\bullet \ \delta_1(\hat{\mathfrak{b}}, \mathring{\mathfrak{b}}_w) \stackrel{\text{def}}{=} \sum_p |b(p) v_w(p)|$
 - $\bullet \ \delta_2(\hat{\mathfrak{b}}, \mathring{\hat{\mathfrak{b}}}_w) \stackrel{\text{\tiny def}}{=} \sqrt{\sum_p \big| b(p) v_w(p) \big|^2}$
- These measures *disagree radically* regarding the norms they entail *via accuracy-dominance* in our framework [15].
- Joyce [9] gives an interesting "evidentialist" argument for δ_2 (over δ_1). The argument concerns a specific, simple agent S.
- Let $P_i \stackrel{\text{def}}{=}$ a fair, 3-sided die comes up "i". Suppose S has the credal set $\mathfrak{b} = \langle \frac{1}{3}, \frac{1}{3}, \frac{1}{3} \rangle$. And, suppose S knows **only** that the die is fair (i.e., S has no other P_i -relevant evidence).
- Joyce claims that such an *S* clearly has the "evidentially correct" credences. Here, Joyce appeals to an *evidential* requirement for credences: *The Principal Principle* (PP) [14].
- So far, so good. But, *bad news lurks* for δ_1 ...

- Consider the following two possible choices for δ :
 - $\delta_1(\hat{\mathfrak{b}}, \mathring{\hat{\mathfrak{b}}}_w) \stackrel{\text{def}}{=} \sum_p |b(p) v_w(p)|$
 - $\bullet \ \delta_2(\hat{\mathfrak{b}},\mathring{\hat{\mathfrak{b}}}_w) \stackrel{\text{\tiny def}}{=} \sqrt{\sum_p \big|b(p) v_w(p)\big|^2}$
- These measures *disagree radically* regarding the norms they entail *via accuracy-dominance* in our framework [15].
- Joyce [9] gives an interesting "evidentialist" argument for δ_2 (over δ_1). The argument concerns a specific, simple agent S.
- Let $P_i \stackrel{\text{def}}{=}$ a fair, 3-sided die comes up "i". Suppose S has the credal set $\mathfrak{b} = \langle \frac{1}{3}, \frac{1}{3}, \frac{1}{3} \rangle$. And, suppose S knows **only** that the die is fair (i.e., S has no other P_i -relevant evidence).
- Joyce claims that such an *S* clearly has the "evidentially correct" credences. Here, Joyce appeals to an *evidential* requirement for credences: *The Principal Principle* (PP) [14].
- So far, so good. But, *bad news lurks* for δ_1 ...

- $\mathfrak{b}' = \langle 0, 0, 0 \rangle$ strictly δ_1 -dominates $\mathfrak{b} = \langle \frac{1}{3}, \frac{1}{3}, \frac{1}{3} \rangle$!

- $\mathfrak{b}' = \langle 0, 0, 0 \rangle$ strictly δ_1 -dominates $\mathfrak{b} = \langle \frac{1}{3}, \frac{1}{3}, \frac{1}{3} \rangle$!
- S faces a conflict between an evidential requirement [(PP)] and a coherence requirement [(WADA $_{\delta_1}$)]. Joyce thinks the evidential requirement *trumps here*. We're inclined to agree.

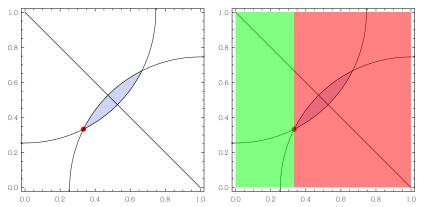
- $\mathfrak{b}' = \langle 0, 0, 0 \rangle$ strictly δ_1 -dominates $\mathfrak{b} = \langle \frac{1}{3}, \frac{1}{3}, \frac{1}{3} \rangle$!
- S faces a conflict between an evidential requirement [(PP)] and a coherence requirement [(WADA δ_1)]. Joyce thinks the evidential requirement *trumps here*. We're inclined to agree.
 - But, we [2] think this sets Joyce himself up for a potential "evidentialist" objection. Joyce needs to argue that:

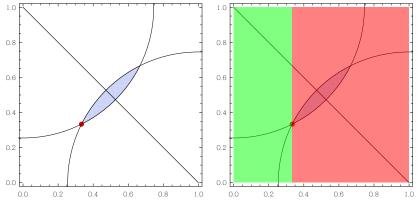
- $\mathfrak{b}' = \langle 0, 0, 0 \rangle$ strictly δ_1 -dominates $\mathfrak{b} = \langle \frac{1}{3}, \frac{1}{3}, \frac{1}{3} \rangle$!
- S faces a conflict between an evidential requirement [(PP)] and a coherence requirement [(WADA $_{\delta_1}$)]. Joyce thinks the evidential requirement *trumps here*. We're inclined to agree.
 - But, we [2] think this sets Joyce himself up for a potential "evidentialist" objection. Joyce needs to argue that:
 - (†) If S adopts a proper measure (e.g., δ_2), then S's evidential requirements cannot conflict with S's coherence (viz., non- δ -dominance) requirements. [But, this *can* happen if S adopts an *improper* measure (e.g., δ_1), as in the case above.]
 - To see why Joyce needs an argument for (†), consider an

- $\mathfrak{b}' = \langle 0, 0, 0 \rangle$ strictly δ_1 -dominates $\mathfrak{b} = \langle \frac{1}{3}, \frac{1}{3}, \frac{1}{3} \rangle$!
- S faces a conflict between an evidential requirement [(PP)] and a coherence requirement [(WADA $_{\delta_1}$)]. Joyce thinks the evidential requirement *trumps here*. We're inclined to agree.
 - But, we [2] think this sets Joyce himself up for a potential "evidentialist" objection. Joyce needs to argue that:
 - (†) If S adopts a proper measure (e.g., δ_2), then S's evidential requirements cannot conflict with S's coherence (viz., non- δ -dominance) requirements. [But, this *can* happen if S adopts an *improper* measure (*e.g.*, δ_1), as in the case above.]
 - To see why Joyce needs an argument for (†), consider an agent *S* with a non-probabilistic *b* s.t.: $b(P) = \frac{1}{2}$, $b(\neg P) = \frac{1}{2}$.
 - Suppose S adopts δ_2 . So, S is (strictly) δ -dominated by each

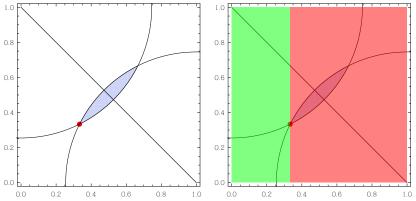
- $\mathfrak{b}' = \langle 0, 0, 0 \rangle$ strictly δ_1 -dominates $\mathfrak{b} = \langle \frac{1}{3}, \frac{1}{3}, \frac{1}{3} \rangle$!
- S faces a conflict between an evidential requirement [(PP)] and a coherence requirement [(WADA $_{\delta_1}$)]. Joyce thinks the evidential requirement *trumps here*. We're inclined to agree.
 - But, we [2] think this sets Joyce himself up for a potential "evidentialist" objection. Joyce needs to argue that:
 - (†) If S adopts a proper measure (e.g., δ_2), then S's evidential requirements cannot conflict with S's coherence (viz., non- δ -dominance) requirements. [But, this *can* happen if S adopts an *improper* measure (*e.g.*, δ_1), as in the case above.]
 - To see why Joyce needs an argument for (†), consider an agent *S* with a non-probabilistic *b* s.t.: $b(P) = \frac{1}{2}$, $b(\neg P) = \frac{1}{2}$.
 - Suppose *S* adopts δ_2 . So, *S* is (strictly) δ -dominated by each member b' of a set of (probabilistic) credence functions \mathbf{b}' . [Note that no member of **b**' can be such that $b(P) \le 0.3$.]
 - Now, what if S's evidence requires (exactly) that $b(P) \le 0.3$?

- $\mathfrak{b}' = \langle 0, 0, 0 \rangle$ strictly δ_1 -dominates $\mathfrak{b} = \langle \frac{1}{3}, \frac{1}{3}, \frac{1}{3} \rangle$!
- S faces a conflict between an evidential requirement [(PP)] and a coherence requirement [(WADA $_{\delta_1}$)]. Joyce thinks the evidential requirement *trumps here*. We're inclined to agree.
 - But, we [2] think this sets Joyce himself up for a potential "evidentialist" objection. Joyce needs to argue that:
 - (†) If S adopts a proper measure (e.g., δ_2), then S's evidential requirements cannot conflict with S's coherence (viz., non- δ -dominance) requirements. [But, this *can* happen if S adopts an *improper* measure (*e.g.*, δ_1), as in the case above.]
 - To see why Joyce needs an argument for (†), consider an agent *S* with a non-probabilistic *b* s.t.: $b(P) = \frac{1}{2}$, $b(\neg P) = \frac{1}{3}$.
 - Suppose *S* adopts δ_2 . So, *S* is (strictly) δ -dominated by each member b' of a set of (probabilistic) credence functions \mathbf{b}' . [Note that no member of **b**' can be such that $b(P) \le 0.3$.]
 - Now, what if S's evidence requires (exactly) that $b(P) \le 0.3$?





Note: what the agent learns here is that her evidence rules-out all of the functions \mathbf{b}' that δ_2 -dominate her.



- Note: what the agent learns here is that her evidence rules-out all of the functions \mathbf{b}' that δ_2 -dominate her.
 - This conflict is similar to the one that led us to reject δ_1 . But, here, we're using it for a different dialectical purpose.

- Because Joyce does not articulate a *general evidential norm* (Eb) for credences, it is unclear what to say (generally) about the bottom arrows on the *b*-side an important *dis*analogy.
- In this sense, the structure of norms for B seems more complete/articulated than the analogous structure for b.

 We need an independent argument for (Fb) ⇒ (WADAs)
- Richard will describe one possible way to fill this gap.

Full Belief/Disbelief (35)	Credence (b)
(TB) S's B/D's (3) should be vindicated.	(Tb) S's credences (b) should be vindicated.
1 14	₩ ₩
(PV_d) S's \mathfrak{B} should be consistent.	(PV _δ) S's β should be <i>extremal</i> .
₩ ₩	₩ ₩
(WADA _d) S 's $\mathfrak B$ should be non-d-dominated.	(WADA $_{\delta}$) <i>S</i> 's δ should be <i>non-δ-dominated</i> .
↑ ¥	↑? ¥?
(EB) S's B should be supported by E.	(Eb) S's 6 should be supported by E.

- Because Joyce does not articulate a *general evidential norm* (Eb) for credences, it is unclear what to say (generally) about the bottom arrows on the b-side an important disanalogy.
- In this sense, the structure of norms for B seems more complete/articulated than the analogous structure for b.

 We need an independent argument for (Fb) ⇒ (WADAs).
- Richard will describe one possible way to fill this gap.

Full Belief/Disbelief (35)	Credence (b)
(TB) S's B/D's (3) should be vindicated.	(Tb) <i>S</i> 's credences (b) should be <i>vindicated</i> .
↓ 1/4	₩ 1/4
(PV _d) S 's \mathfrak{B} should be <i>consistent</i> .	(PV_{δ}) S's $\mathfrak b$ should be <i>extremal</i> .
₩ #	₩ ₩
(WADA _d) S 's $\mathfrak B$ should be non-d-dominated.	(WADA $_{\delta}$) <i>S</i> 's β should be <i>non-δ-dominated</i> .
0. ∳	↑? U?
(EB) S's B should be supported by E.	(Eb) S's 6 should be supported by E.

- Because Joyce does not articulate a general evidential norm
 (Eb) for credences, it is unclear what to say (generally) about the bottom arrows on the b-side an important disanalogy.
- In this sense, the structure of norms for B seems more complete/articulated than the analogous structure for β.
- Richard will describe one possible way to fill this gap.

Full Belief/Disbelief (25)	Credence (b)
(TB) S's B/D's (3) should be vindicated.	(Tb) S's credences (b) should be vindicated.
₩ 1/4	₩ 1/4
(PV_d) S's \mathfrak{Z} should be <i>consistent</i> .	(PV $_{\delta}$) S's $\mathfrak b$ should be <i>extremal</i> .
₩ ₩	₩ ₩
(WADA _d) S's \mathfrak{Z} should be non-d-dominated.	(WADA $_{\delta}$) <i>S</i> 's β should be <i>non-\delta-dominated</i> .
↑ ½	↑? ∜?
(EB) S's 35 should be supported by E.	(Eb) S's 6 should be supported by E.

- Because Joyce does not articulate a *general evidential norm* (Eb) for credences, it is unclear what to say (generally) about the bottom arrows on the b-side an important disanalogy.
- o In this sense, the structure of norms for β seems *more* complete/articulated than the analogous structure for β.

 We need an independent argument for (Fb) = (WADAs)
- Richard will describe one possible way to fill this gap.

Full Belief/Disbelief (25)	Credence (b)
(TB) S's B/D's (3) should be vindicated.	(Tb) <i>S</i> 's credences (b) should be <i>vindicated</i> .
↓ 1/4	₩ 1/4
(PV _d) S's \mathfrak{B} should be <i>consistent</i> .	(PV_{δ}) S's $\mathfrak b$ should be <i>extremal</i> .
₩ 1/4	₩ 1/4
(WADA _d) S 's \mathfrak{Z} should be non-d-dominated.	(WADA $_{\delta}$) S's $\mathfrak b$ should be non- δ -dominated.
↑ ₩	↑? ∜?
(EB) S's 2 should be supported by E.	(Eb) S's 6 should be supported by E.

- Because Joyce does not articulate a *general evidential norm* (Eb) for credences, it is unclear what to say (generally) about the bottom arrows on the b-side an important disanalogy.
- In this sense, the structure of norms for *B* seems *more complete/articulated than* the analogous structure for *β*.
- Richard will describe one possible way to fill this gap.

Full Belief/Disbelief (3)	Credence (b)
(TB) S's B/D's (3) should be vindicated.	(Tb) <i>S</i> 's credences (b) should be <i>vindicated</i> .
₩ ₩	₩ 1/4
(PV_d) S's \mathfrak{B} should be <i>consistent</i> .	(PV $_{\delta}$) S's $\mathfrak b$ should be <i>extremal</i> .
₩ 14	₩ #
(WADA _d) S 's \mathfrak{B} should be non-d-dominated.	(WADA $_{\delta}$) S's $\mathfrak b$ should be non- δ -dominated.
↑ 1/	↑? ↓?
(EB) S's 3 should be supported by E.	(Eb) <i>S</i> 's b should be <i>supported by E</i> .

- Because Joyce does not articulate a *general evidential norm* (Eb) for credences, it is unclear what to say (generally) about the bottom arrows on the *b*-side an important *dis*analogy.
- In this sense, the structure of norms for 3 seems *more* complete/articulated than the analogous structure for β.
- Richard will describe one possible way to fill this gap.

Full Belief/Disbelief (35)	Credence (b)
(TB) S's B/D's (3) should be vindicated.	(Tb) <i>S</i> 's credences (b) should be <i>vindicated</i> .
₩ ₩	↓ 1/4
(PV _d) S's \mathfrak{B} should be <i>consistent</i> .	(PV_{δ}) S's \mathfrak{b} should be <i>extremal</i> .
₩ ₩	₩ ₩
(WADA _d) S 's \mathfrak{B} should be non-d-dominated.	(WADA $_{\delta}$) <i>S</i> 's \emptyset should be <i>non-\delta-dominated</i> .
↑ ¥	↑ ? ↓?
(EB) S's 3 should be supported by E.	(Eb) <i>S</i> 's ß should be <i>supported by E</i> .

- Because Joyce does not articulate a *general evidential norm* (Eb) for credences, it is unclear what to say (generally) about the bottom arrows on the *b*-side an important *dis*analogy.
- In this sense, the structure of norms for 3 seems *more complete/articulated than* the analogous structure for 6.

We need an independent argument for (Eb) \Rightarrow (WADA $_{\delta}$).

Richard will describe one possible way to fill this gap.

Full Belief/Disbelief (3)	Credence (b)
(TB) S's B/D's (3) should be vindicated.	(Tb) <i>S</i> 's credences (b) should be <i>vindicated</i> .
₩ ₩	₩ #
(PV _d) S's \mathfrak{B} should be <i>consistent</i> .	(PV_{δ}) S's $\mathfrak b$ should be <i>extremal</i> .
₩ 1/4	₩ #
(WADA _d) S 's \mathfrak{Z} should be non-d-dominated.	(WADA $_{\delta}$) <i>S</i> 's \mathfrak{b} should be <i>non-\delta-dominated</i> .
↑ ₩	↑? ↓?
(EB) S 's \mathfrak{B} should be supported by E .	(Eb) S 's \mathfrak{b} should be supported by E .

- Because Joyce does not articulate a *general evidential norm* (Eb) for credences, it is unclear what to say (generally) about the bottom arrows on the *b*-side an important *dis*analogy.
- In this sense, the structure of norms for **3** seems *more complete/articulated than* the analogous structure for **β**.
- We need an independent argument for (Eb) ⇒ (WADA_δ)
- Richard will describe one possible way to fill this gap.

Full Belief/Disbelief (3)	Credence (b)
(TB) S's B/D's (3) should be vindicated.	(Tb) <i>S</i> 's credences (b) should be <i>vindicated</i> .
₩ 1/4	₩ 16
(PV_d) S's \mathfrak{Z} should be <i>consistent</i> .	(PV $_{\delta}$) S's $\mathfrak b$ should be <i>extremal</i> .
₩ ₩	₩ 14
(WADA _d) S's \mathfrak{B} should be non-d-dominated.	(WADA $_{\delta}$) S's \mathfrak{b} should be non- δ -dominated.
↑ ₩	↑? ∜?
(EB) S 's \mathfrak{B} should be supported by E .	(Eb) S 's \mathfrak{b} should be supported by E .

- Because Joyce does not articulate a *general evidential norm* (Eb) for credences, it is unclear what to say (generally) about the bottom arrows on the b-side an important disanalogy.
- In this sense, the structure of norms for **3** seems *more complete/articulated than* the analogous structure for **6**.
- We need an independent argument for (Eb) \Rightarrow (WADA_δ).
 - Richard will describe one possible way to fill this gap.

Full Belief/Disbelief (3)	Credence (b)
(TB) S's B/D's (3) should be vindicated.	(Tb) <i>S</i> 's credences (b) should be <i>vindicated</i> .
₩ ₩	₩ #
(PV_d) S's \mathfrak{B} should be <i>consistent</i> .	(PV_{δ}) S's $\mathfrak b$ should be <i>extremal</i> .
₩ 14	₩ #
(WADA _d) S's \mathfrak{B} should be non-d-dominated.	(WADA $_{\delta}$) S's $\mathfrak b$ should be non- δ -dominated.
↑ ¥	↑? ∜?
(EB) S's 3 should be <i>supported by E</i> .	(Eb) S 's \mathfrak{b} should be supported by E .

- Because Joyce does not articulate a *general evidential norm* (Eb) for credences, it is unclear what to say (generally) about the bottom arrows on the b-side an important disanalogy.
- In this sense, the structure of norms for **3** seems *more complete/articulated than* the analogous structure for β.

We need an independent argument for (Eb) ⇒ (WADA_δ).

• Richard will describe one possible way to fill this gap.

Full Belief/Disbelief (26)	Credence (b)
(TB) S's B/D's (3) should be vindicated.	(Tb) <i>S</i> 's credences (b) should be <i>vindicated</i> .
₩ 1/4	₩ #
(PV _d) S's \mathfrak{B} should be <i>consistent</i> .	(PV_{δ}) S's $\mathfrak b$ should be <i>extremal</i> .
₩ 14	₩ 14
(WADA _d) S 's \mathfrak{B} should be non-d-dominated.	(WADA $_{\delta}$) <i>S</i> 's \mathfrak{b} should be <i>non-\delta-dominated</i> .
↑ 1	↑? ↓?
(EB) S's 25 should be supported by E.	(Eb) S 's \mathfrak{b} should be supported by E .

- Because Joyce does not articulate a *general evidential norm* (Eb) for credences, it is unclear what to say (generally) about the bottom arrows on the b-side an important disanalogy.
- In this sense, the structure of norms for **3** seems *more complete/articulated than* the analogous structure for β.
- We need an independent argument for (Eb) ⇒ (WADA_δ).
 - Richard will describe one possible way to fill this gap.

Full Belief/Disbelief (3)	Credence (b)
(TB) S's B/D's (3) should be vindicated.	(Tb) <i>S</i> 's credences (b) should be <i>vindicated</i> .
₩ ₩	₩ #
(PV _d) S's \mathfrak{B} should be <i>consistent</i> .	(PV $_{\delta}$) S's $\mathfrak b$ should be <i>extremal</i> .
₩ 1/4	₩ ₩
(WADA _d) S 's \mathfrak{Z} should be non-d-dominated.	(WADA $_{\delta}$) S's \mathfrak{b} should be non- δ -dominated.
↑ ₩	↑? ↓?
(EB) S 's \mathfrak{B} should be supported by E .	(Eb) S 's \mathfrak{b} should be supported by E .

- Because Joyce does not articulate a *general evidential norm* (Eb) for credences, it is unclear what to say (generally) about the bottom arrows on the b-side an important disanalogy.
- In this sense, the structure of norms for **3** seems *more complete/articulated than* the analogous structure for **b**.
- We need an independent argument for (Eb) ⇒ (WADA_δ).
 - Richard will describe one possible way to fill this gap.

- [1] K. Easwaran and B. Fitelson, Accuracy, Coherence & Evidence, in progress, 2012.
- [2] ______, An "Evidentialist" Worry about Joyce's Argument for Probabilism, Dialectica, to appear, 2012.
- [3] R. Carnap, Logical Foundations of Probability, U. of Chicago, 2nd ed., 1962.
- [4] D. Christensen, Putting Logic in its Place, OUP, 2007.
- [5] B. de Finetti, *The Theory of Probability*, Wiley, 1974.
- [6] I. Douven and T. Williamson, Generalizing the Lottery Paradox, BJPS, 2006.
- [7] B. Fitelson and D. McCarthy, *Steps Toward a New Foundation for Subjective Probability*, in progress, 2012.
- [8] R. Fumerton, Metaepistemology and Skepticism, Rowman & Littlefield, 1995.
- [9] J. Joyce, Accuracy and Coherence: Prospects for an Alethic Epistemology of Partial Belief, in F. Huber and C. Schmidt-Petri (eds.), Degrees of Belief, 2009.
- [10] _____, A Nonpragmatic Vindication of Probabilism, Philosophy of Science, 1998.
- [11] N. Kolodny, How Does Coherence Matter?, Proc. of the Aristotelian Society, 2007.
- [12] H. Kyburg, *Probability and the Logic of Belief*, Wesleyan, 1961.
- [13] H. Leitgeb, Reducing Belief Simpliciter to Degrees of Belief, manuscript, 2010.
- [14] D. Lewis, A Subjectivists's Guide to Objective Chance, 1980.
- [15] _____, Joyce's Argument for Probabilism, Philosophy of Science, 2002.
- [16] D. Makinson, The Paradox of the Preface, Analysis, 1965.
- [17] J. Pollock, The Paradox of the Preface, Philosophy of Science, 1986.
- [18] T. Williamson, *Knowledge and its Limits*, Oxford University Press, 2000.