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What is 
Quantum Space Time?



(Perturbative) Quantum Field Theory

interaction

free theory

free theory
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time

space
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Hilbert space for
free

theory

no Hilbert
space for interacting

theory

Perturbative quantum 
gravity fails:

non-renormalizable.

And does not 
answer crucial 

questions  
(eg big bang).

observable of
(free) theory



Quantum gravity

interaction
??time??

??space??

not observables
of the
theory
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Hilbert space
supporting

diffeomorphism
invariant 

excitations?? Space time coordinates 
have no physical significance.
Need to implement 
diffeomorphisms invariance. 
This avoids assigning 
unphysical 
quantum fluctuations to 
choice of coordinates.



Quantum geometry dynamics? 

All quantum geometry states encode 4D quantum geometry (histories), 
however (almost) all of these describe “virtual” (non-dynamical) quantum 

histories.

Physical states are thus that solve the quantum equations 
of motion of the theory, aka constraints.



Is it a “problem” with the canonical formalism?

• Start with the path integral approach.

• Want to make geometries quantum: sum over geometries:  Geom:
     Need to attach amplitudes to  Geom’s.

• Configurations are boundary geometries:   b.geom 

• Consider wave function(al)s of boundary geometries:                      

• Will encode full  q-Geom! 

Consider “transition amplitude”:  give all the observables of the system. 

(The interpretation as “transition amplitude” is subtle.)

+ ...+

+ ...+

+ ...+
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[Perez,Rovelli]
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[proof for class. GR:
              BD 05       ]



Path integral = sum over spacetime geometries

+ ...+
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‘sum’ over geometries

quantum amplitude                   
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“transition amplitude” measure                   



Path integral is a projector  
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=

sum over all space 
time geometries with 
arbitrary time 
extension

sum over all space 
time geometries with 
arbitrary time 
extension

sum over all
boundary 
states

sum over all space 
time geometries with 
arbitrary time 
extension
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projector
property                

[Halliwell, Hartle  91]
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assumes factorization
of amplitudes over
regions



Path integral is a projector:  implies constraints
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projector
property                

 Need only  
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physical states,  described by constraints

As              on physical states there is no  time evolution in the usual sense. 
Indeed there is no background time parameter in the path integral.      “Frozen time picture”.

Because we do want to quantize space-time:  path integral includes sum over time distances.

Flow of time has to be reconstructed from boundary states. 
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Path integral and discretization

+ ...+

sum over 
geometries = 
sum over labels
associated to the 
triangulation
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Path integral not well defined:
  What is the path integral measure?

define measure
through discretization of underlying manifold 

construction of amplitudes from GR action       
             spin foam model

[Reisenberger, Rovelli, Barrett,
Crane, Freidel, Krasnov, Livine, Speziale…]



Problem with discretization?

TT T T

T

usual path integral for  
fixed time interval
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discretize and use approximations valid
for small time steps
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path integral in gravity / 
reparam.-invariant systems 
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can be any time interval, including infinity

TT T T

So how could discretization help??



Problem with discretization?

Discretized path integral in (4D) gravity or reparametrization invariant systems is usually not a projector.

Due to breaking of diffeomorphism symmetry by discretization.
[Bahr, BD  09]

[Bahr, BD, Steinhaus  11]
[BD, Steinhaus  11]

[BD, Kaminski, Steinhaus  14]

[BD, Hoehn  09]

If path integral has projector property:  have reached continuum limit (at least in “time”),
as further subdivision will not change the result (as path integral is a projector). 

Need to restore projector property of path integral!
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path integral given by
fixed point of 
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coarse graining flow

[Bahr, BD, Steinhaus  11]

Evaluating path integral via coarse graining

boundary data encode  
time interval: 

take more and more
subdivisions into 

account

Quality of approximation depends on boundary data 
(or matrix elements )



Diffeo symmetry and discretization independence 
restored

Diffeo-symmetry (in the discrete) implies discretization independence. [Bahr, BD, Steinhaus  11]

q(1), t(1) q(2), t(2)q(0), t(0)
q(0), t(0) q(2), t(2)q(1), t(1) q(2), t(2)q(0), t(0)



Evaluating path integral via coarse graining: 

 higher dimensions?

Coarse graining of non-topological theories leads to non-local couplings: impossible 
to control.

[Bahr, BD, He  11]

Even weak notion of diffeo-symmetry / triangulation independence needs non-local 
amplitudes.

[BD 12]

[BD, Kaminski, Steinhaus  14]

bulk discretization

boundary 
discretization !



Generalized boundary formalism
[Oeckl 00’s + …]

surface at some
constant time 

surface at some 
constant time Fundamental objects encoding the dynamics.

generalized 
boundary
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vacuum=state for an empty boundary
   =simplest possible state



Generalized boundary formalism
Assumes ‘gluing axiom’:

needed to get more complicated from simpler 
amplitudes

Amplitude for bigger region 
= 

glued from amplitudes for smaller regions

Integrating over data 
associated to discretization 
misses out on most of the 

continuum data

However this gluing axiom does not hold in the 
discrete: 

Restricting to discretization we never obtain a 
full resolution of identity for the continuum 

Hilbert space. 
(This leads eventually to non-local amplitudes if 

one wants to represent continuum physics.)

Amplitude for more complicated 
boundary state

= 
glued from amplitudes for less 
complicated boundary state



Towards consistent boundary formalism
[BD12, BD14, BD to appear]

We do not assume “gluing axiom”.

However we need a principle to connect amplitudes for less complicated and more 
complicated boundary data.

This will also allow to construct the amplitudes in an computation and approximation scheme. [BD, Steinhaus 13]

Main Idea:  A “discretization” just determines the wave function for a small subset of the degrees 
of freedom.  All other degrees of freedom are put into the simplest state = vacuum state.

Remarks: 
• One can choose what the vacuum is.
• In this formalism we are discrete and continuous at once: discreteness just means to probe 

finitely many degrees of freedom.
• However we still have to ‘emulate’ continuum dynamics. 

Main Challenge:  Be consistent - observables should not depend on choice of discrete structure,         
                                                which is used to compute it.



To be discrete or not discrete …

See discrete structure as a probe of continuum Hilbert space.

Simple states can be represented on simple (discrete) structures. More complicated 
states require more complicated discretization.

Cylindrical consistency conditions ensure that observables do not depend on 
choice of discrete structure.

[Ashtekar-Lewandowski-Isham representation of loop quantum gravity]

[New representation! BD, Geiller 14a,14b, Bahr, BD, Geiller 15 ] nice 
summer

read!

Inductive limit Hilbert space

cannot obtain
full resolution of unity in 

inductive limit Hilbert space
if we do not consider all
states (on arbitrary fine 

discretizations)



How to express the continuum dynamics

* Corresponds to a complete renormalization trajectory,  

        with scale given by complexity parameter.

[BD NJP 12, 14]

embedding of
boundary 
Hilbert spaces

Boundary Hilbert space
with high complexity
wave functions

embedding of
boundary 
Hilbert spaces
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restricts  to 

A (complete) family of  consistent amplitudes defines a theory*  of  quantum gravity.

…

…

[BD NJP 12, 14]

Boundary Hilbert space
with low complexity
wave functions

(cylindrical) consistency condition



Instead of gluing axiom, which cannot hold in the discrete,
we require 
consistency of the amplitudes as functionals on the (inductive limit) Hilbert space.

Can this be used to compute the amplitudes?

Amplitudes can be computed iteratively in an approximation scheme. 

Least effort necessary for low complexity  = homogeneous ‘cosmology’ configurations. 

A new paradigm: consistent boundary formalism
[BD12, BD14, BD to appear]

Yes. [BD12, BD14, BD to appear]



Constructing amplitudes

• Construct amplitude for simplest boundary (i.e. simplex) as a first approximation to final answer.

• Us this amplitude in the usual gluing scheme to build amplitudes for more complicated ‘transitions’.
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to  ↵. This is realized if we assume a inductive limit structure for the physical
Hilbert space and use the refining time evolution as (dynamical) embedding maps
◆↵↵0 = K↵↵0 , as proposed in [19].

Note that such embedding maps have to satisfy the consistency conditions
◆↵0↵00 � ◆↵↵0 = ◆↵↵00 for any triple ↵ � ↵0 � ↵00, as discussed in section 2. For
a (refining) time evolution these conditions follow from Kuchar’s requirement of a
path independence of evolution [29], which is equivalent to the constraint algebra
being consistent, that is first class, which itself signifies that di↵eomorphism symme-
try is correctly implemented. We can therefore expect this consistency condition to
hold in the refinement limit, in which we hope to restore di↵eomorphism symmetry.

Another aspect of path independence of evolution is a condition involving as an
in–between state one that is finer than the final state:

K↵00↵0 �K↵↵00 = K↵↵0 (8)

for ↵ � ↵0 � ↵00. If in addition we can identify K↵↵0 = (K↵0↵)†, which should hold
due to the projector property of time evolution, it follows that the amplitude maps
are cylindrically consistent for dynamical embedding maps ◆↵↵0 = K↵↵0 :

A↵0(◆↵↵0 ↵) = h ;|(K;↵0)†|K↵↵0 ↵i
(8)

= h ;|(K;↵)†| ↵i = A↵( ↵) . (9)

This suggest to also change the embedding maps on the kinematical Hilbert space,
as this simplifies the construction of a cylindrical consistent amplitude map.

Indeed we can take (9) as defining an iterative procedure to improve the am-
plitude maps, in particular regarding property (8). To this end we understand the
term on the RHS of the first line in (9) as consisting of two steps. The first is the
computation of h ;|(K;↵0)†, that is the basically the amplitude functional A↵0 for
a more refined boundary ↵. One would build such an amplitude functional from
gluing amplitudes A↵ for less refined boundaries ↵.

As we want to define an iterative process that improves the amplitude maps A↵,
we need to find a way to ‘evolve back’ the amplitudes A↵0 to the boundary Hilbert
space H↵, which is done by using the dynamical embedding map ◆↵↵0 = K↵↵0 . Thus
one defines the improved amplitudes Aimp

↵ as

Aimp
↵ = h ;|(K;↵0)†|K↵↵0 ↵i . (10)

Here both (K;↵0)† and K↵↵0 are built from using the initial A↵ as basic amplitudes.
The process is repeated for the improved amplitudes Aimp

↵ until the procedure
converges to a fixed point Afix

↵ . This fixed point amplitude can be used to proceed
to a more refined pair of boundaries (↵0,↵00) with ↵0 � ↵00 to find the next fixed
point amplitude Afix

↵0 and so on.
One can take this amplitude Afix

↵0 and aim to construct a dynamical embedding
map ◆↵↵0 = K↵↵0 from a coarser boundary ↵ to ↵0. This allows to consider the
pull back Afix,↵0

↵ := ◆⇤↵↵0Afix
↵0 . This amplitude will di↵er from Afix

↵ , the amplitude
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with respect to certain embedding maps ◆↵↵0 . As we will argue below, it might be much easier
to construct such cylindrical consistent amplitudes if we replace the kinematical embedding maps
with dynamical ones.

Such cylindrical consistent amplitude maps are then defined on a continuum Hilbert space H
[;]

associated to the equivalence class of discretizations, that can be obtained by applying refinement
operations to the empty discretization ;.

This brings us to the second interpretation of the amplitude maps as representing the (dualized)
physical vacuum. This interpretation is due to two points:

Firstly we defined the amplitude map via a refining time evolution starting from a ‘no–boundary’
discretization ;. The resulting wave function can be seen as the Hartle Hawking no–boundary wave
function [25].6 This point is also strengthened as the amplitude map A↵(·) = ⌘( ;)· results from
applying the rigging map, to the kinematical vacuum  ; 2 C, which one would expect to carry the
notion of having no excitations and leading to a homogeneous state, see also [26] . This concept of
generating a vacuum state by refining time evolution comes also up in formulations incorporating
evolving phase spaces [27] or Hilbert spaces [28], classical and quantum examples that support this
interpretation can be found in [19]. In the formulation employed here evolving Hilbert spaces are
taken into account via the concept of inductive limit Hilbert spaces.

Secondly, we will use the amplitude maps to define dynamical embedding maps. That is the
amplitude maps lead to an improved, and in the refinement limit, perfect discretization of the path
integral. This path integral can be used to define a refining time evolution, interpolating between a
boundary ↵ and a refined boundary ↵0. However, as we discussed, there is no proper time evolution
in di↵eomorphism invariant systems, it rather acts as a projector onto physical states. In case the
initial state  ↵ is physical, the resulting state  ↵0 should therefore be equivalent to  ↵. This is
realized if we assume a inductive limit structure for the physical Hilbert space and use the refining
time evolution as (dynamical) embedding maps ◆↵↵0 = K↵↵0 , as proposed in [19].

Note that such embedding maps have to satisfy the consistency conditions ◆↵0↵00�◆↵↵0 = ◆↵↵00 for
any triple ↵ � ↵0 � ↵00, as discussed in section 2. For a (refining) time evolution these conditions
follow from Kuchar’s requirement of a path independence of evolution [29], which is equivalent to
the constraint algebra being consistent, that is first class, which itself signifies that di↵eomorphism
symmetry is correctly implemented. We can therefore expect this consistency condition to hold in
the refinement limit, in which we hope to restore di↵eomorphism symmetry.

Another aspect of path independence of evolution is a condition involving as an in–between
state one that is finer than the final state:

K↵00↵0 �K↵↵00 = K↵↵0 (6)

for ↵ � ↵0 � ↵00. If in addition we can identify K↵↵0 = (K↵0↵)†, which should hold due to the
projector property of time evolution, it follows that the amplitude maps are cylindrically consistent
for dynamical embedding maps ◆↵↵0 = K↵↵0 :

A↵0(◆↵↵0 ↵) = h ;|(K;↵0)†|K↵↵0 ↵i
(6)

= h ;|(K;↵)†| ↵i = A↵( ↵) . (7)

This suggest to also change the embedding maps on the kinematical Hilbert space, as this simplifies
the construction of a cylindrical consistent amplitude map.

Indeed we can take (7) as defining an iterative procedure to improve the amplitude maps, in
particular regarding property (6). To this end we understand the term on the RHS of the first line
in (7) as consisting of two steps. The first is the computation of h ;|(K;↵0)†, that is the basically
the amplitude functional A↵0 for a more refined boundary ↵. One would build such an amplitude
functional from gluing amplitudes A↵ for less refined boundaries ↵.

As we want to define an iterative process that improves the amplitude maps A↵, we need to
find a way to ‘evolve back’ the amplitudes A↵0 to the boundary Hilbert space H↵, which is done
by using the dynamical embedding map ◆↵↵0 = K↵↵0 . Thus one defines the improved amplitudes
Aimp

↵ as

Aimp
↵ = h ;|(K;↵0)†|K↵↵0 ↵i . (8)

6The actual proposal [25] Wick rotates part of the time evolution. We do not assume such a Wick rotation here,
which would indeed be hard to define in a completely background independent context.
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discretization ;. The resulting wave function can be seen as the Hartle Hawking no–boundary wave
function [25].6 This point is also strengthened as the amplitude map A↵(·) = ⌘( ;)· results from
applying the rigging map, to the kinematical vacuum  ; 2 C, which one would expect to carry the
notion of having no excitations and leading to a homogeneous state, see also [26] . This concept of
generating a vacuum state by refining time evolution comes also up in formulations incorporating
evolving phase spaces [27] or Hilbert spaces [28], classical and quantum examples that support this
interpretation can be found in [19]. In the formulation employed here evolving Hilbert spaces are
taken into account via the concept of inductive limit Hilbert spaces.

Secondly, we will use the amplitude maps to define dynamical embedding maps. That is the
amplitude maps lead to an improved, and in the refinement limit, perfect discretization of the path
integral. This path integral can be used to define a refining time evolution, interpolating between a
boundary ↵ and a refined boundary ↵0. However, as we discussed, there is no proper time evolution
in di↵eomorphism invariant systems, it rather acts as a projector onto physical states. In case the
initial state  ↵ is physical, the resulting state  ↵0 should therefore be equivalent to  ↵. This is
realized if we assume a inductive limit structure for the physical Hilbert space and use the refining
time evolution as (dynamical) embedding maps ◆↵↵0 = K↵↵0 , as proposed in [19].

Note that such embedding maps have to satisfy the consistency conditions ◆↵0↵00�◆↵↵0 = ◆↵↵00 for
any triple ↵ � ↵0 � ↵00, as discussed in section 2. For a (refining) time evolution these conditions
follow from Kuchar’s requirement of a path independence of evolution [29], which is equivalent to
the constraint algebra being consistent, that is first class, which itself signifies that di↵eomorphism
symmetry is correctly implemented. We can therefore expect this consistency condition to hold in
the refinement limit, in which we hope to restore di↵eomorphism symmetry.

Another aspect of path independence of evolution is a condition involving as an in–between
state one that is finer than the final state:

K↵00↵0 �K↵↵00 = K↵↵0 (6)

for ↵ � ↵0 � ↵00. If in addition we can identify K↵↵0 = (K↵0↵)†, which should hold due to the
projector property of time evolution, it follows that the amplitude maps are cylindrically consistent
for dynamical embedding maps ◆↵↵0 = K↵↵0 :

A↵0(◆↵↵0 ↵) = h ;|(K;↵0)†|K↵↵0 ↵i
Conv= h ;|(K;↵)†| ↵i = A↵( ↵) . (7)

This suggest to also change the embedding maps on the kinematical Hilbert space, as this simplifies
the construction of a cylindrical consistent amplitude map.

Indeed we can take (7) as defining an iterative procedure to improve the amplitude maps, in
particular regarding property (6). To this end we understand the term on the RHS of the first line
in (7) as consisting of two steps. The first is the computation of h ;|(K;↵0)†, that is the basically
the amplitude functional A↵0 for a more refined boundary ↵. One would build such an amplitude
functional from gluing amplitudes A↵ for less refined boundaries ↵.

As we want to define an iterative process that improves the amplitude maps A↵, we need to
find a way to ‘evolve back’ the amplitudes A↵0 to the boundary Hilbert space H↵, which is done
by using the dynamical embedding map ◆↵↵0 = K↵↵0 . Thus one defines the improved amplitudes
Aimp

↵ as

Aimp
↵ = h ;|(K;↵0)†|K↵↵0 ↵i . (8)

6The actual proposal [25] Wick rotates part of the time evolution. We do not assume such a Wick rotation here,
which would indeed be hard to define in a completely background independent context.
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In praxis: tensor network renormalization 
(using local truncation method)

bare/initial amplitude 
depending on four variables
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Obtain “effective amplitude” with more boundary 
variables. 
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Phase diagram for spin foam analogues

• models are similar to anyonic spin chains         [Feiguin et al 06]

• but can be also interpreted as particular spin foams describing the gluing of two 
space time atoms

• changing certain parameters in initial model: changes how the atoms glue

        (technically: changes implication of simplicity constraints)

• anyonic spin chains support very rich phase structure,  classification in                                                           
[BD, Kaminski 13 and to appear]

6.2.2 Phase diagram for k = 8

For the quantum group with k = 8, we discuss the linear combintation of four fixed point intertwiners, each labelled
with a maximal (even) spin 1  J  4, where we neglect J = 0 as argued above. Together with the requirement
that

P
J ↵J = 1, we have three free parameters. In figure 9 we show the full parameter space, with a raster of

coloured points indicating the fixed point they flow to. In figure 10 we show the interesting slice, where ↵3 = 0.
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Figure 9: Phase diagram for k = 8 with ↵0 = 0. The coloured dots indicate to which fixed point the respective
initial models flow to: The green dots show the factorizing models, lighter green for J = 1 (area that starts at the
vertex (↵1,↵2,↵3) = (1, 0, 0)), darker for J = 2 (area that starts at the vertex (0,1,0)). Analogue BF theory is
blue (area that starts at the vertex (0,0,1)). The so-called ‘mixed’ fixed point is orange (area that starts at the
vertex (0,0,0)).
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Figure 10: Slice of the phase diagram for k = 8 with ↵0 = ↵3 = 0. The colouring is the same as in the previous
diagram, namely the right corner corresponds to models flowing to the factorizing fixed point with J = 1, the upper
left corner corresponds to models that flow to the factorizing fixed point with J = 2, the models at the bottom left
corner flow to the ‘mixed’ fixed point, and the phase in between these three phases corresponds to analogue BF.

As in the previous diagram, we find extended phases for all fixed points, here the two factorizing fixed points for
J = 1 and J = 2, a phase for analogue BF theory and one for the ‘mixed’ fixed point. Again, the two dominating
phases are analogue BF theory and the factorizing fixed point with J = 1. Of particular interest is the special
slice that we picked in figure 10 because of the following two observations: First this slice shows clearly that the
analogue BF fixed point is very attractive, since in this slice its associated fixed point intertwiner is not excited,
↵3 = 0. Even if we stay on the line given by ↵1 + ↵2 = 1, i.e. the diagonal boundary in figure 10, the system
flows to BF for an intermediate region between the two phases and spoils a direct phase transition between the
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Interpretation: different phases describe 
uncoupled space time atoms (green) and 
coupled space time atoms (orange,blue).

Positive indication for finding a 
geometric phase in spin foams.

[BD, Martin-Benito, Schnetter  NJP 13]

BD, Martin-Benito, Steinhaus PRD 13]



Phase diagram for spin foams ?

• need to develop (tensor network) coarse graining algorithms for 

         spin foams = generalized lattice gauge theories

• first algorithm for 3D Abelian lattice gauge theories: decorated tensor networks

• 3D Non-Abelian lattice gauge theories  [Delcamp, BD to appear]

    

 

[BD, Mizera, Steinhaus 14]

Phases in lattice gauge theory

deconfining phase
(topological phase)

coupling

confining phase ‘no space’ phase

BF topological phase
(gives 3D gravity!)

Are there more
phases in

spin foams?

Positive indication from

2D analogue models.



Complexity of states and flow of time

things might happen

more things might 
happen

physical vacuum:
nothing happens

(with respect to homogeneous state 
described by vacuum)

There is a lot to say and explore but Philipp rather wants me to finish 
and lead you to a chaotic universe. Even quantum.

Where there would be even more to say about …



Summary

•Quantum space-time: 

            - time evolution operator is a projector

            - interpretation reconstructable from boundary data

 

• Consistent boundary formalism:

                - new paradigm to express full (continuum) dynamics and probe it with 

                  (lower complexity) boundary states

                - allows for systematic calculation and approximation scheme

           

•   wip: Construction of Quantum Space Times


