In Favour of a Schrödinger Evolution for the Universe

Sean Gryb with Karim Thébault

Radboud Universiteit Nijmegen

Institute for Mathematics, Astrophysics and Particle Physics

The Problem of Time in Perspective Munich Center for Mathematical Philosophy July 3, 2015

Intro	Global Rep (Classical)	Global Rep (Quantum)	Relational Quantization		Summary/Outlook
● 00	0000	00	0000	00	00
Fundan	nental Postulate				

- It is possible, in principle, to measure time using a clock.
- \Rightarrow clock readings are observables.

 Intro
 Global Rep (Classical)
 Global Rep (Quantum)
 Relational Quantization
 Gravity
 Summary/Outlook

 0
 0
 0
 0
 0
 0
 0

 Negative Argument for Reduced Phase Space and Dirac Quantization

Clock readings are observable

<u>Global</u> reparametrizations do not reflect a redundancy at the level of phase space variables.

Space of Solutions

What the space of solutions is:

The space of valid initial data for the classical evolution problem.
 ⇒ meaningless without a notion of evolution.

AND NOT

- A physical (i.e., reduced) phase space (no evolution).
 - \Rightarrow consequence of a redundancy.

Thus:

A quantization of the space of solutions does not capture the physics of our Fundamental Postulate \Rightarrow clocks not treated as observable.

This applies to:

- Reduced phase space quantization.
- Dirac quantization.

Intro	Global Rep (Classical)	Global Rep (Quantum)	Relational Quantization		Summary/Outlook
000	0000	00	0000	00	00
Our P	roposal (In Brie	f)			

For globally reparametrization invariant theories:

Relational Quantization

- Observables (mutables): Full non-redundant phase space, (q, p).
- \bullet Classical evolution: integral curves of the Hamiltonian constraint, ${\cal H},$ labelled by unobservable parameter τ

$$\dot{\boldsymbol{q}} = \{ \boldsymbol{q}, \mathcal{H} \}$$
 $\dot{\boldsymbol{p}} = \{ \boldsymbol{p}, \mathcal{H} \}$

• Quantum evolution: mutable algebra evolves according to

$$\hat{q}(au)=e^{-i au\hat{\mathcal{H}}}\hat{q}(0)e^{i au\hat{\mathcal{H}}}\qquad \hat{p}(au)=e^{-i au\hat{\mathcal{H}}}\hat{p}(0)e^{i au\hat{\mathcal{H}}}$$

 \Rightarrow Time Dependent Schrödinger equation.

For gravity:

Shape Dynamics

- Fix local time by requiring local scale invariance \Rightarrow Shape Dynamics.
- Relationally quantize Shape Dynamics.

The	"Global" in Glob	al Renarametriza	ation		
000	0000	00	0000	00	00
	Global Rep (Classical)	Global Rep (Quantum)	Relational Quantization		Summary/Outlook

Invariance of Action

Action $S = \int d\tau L(q, \dot{q})$ invariant under

Note:

- τ Single time variable (not a function of Σ).
- q can be a field on Σ.

Caveat

- L homogeneous of degree 1 in \dot{q} .
- \Rightarrow Hamiltonian constraint $\mathcal{H} = 0$.

Classical solutions are integral curves of ${\mathcal H}$ labelled by $\tau.$

	Global Rep (Classical)	Global Rep (Quantum)	Relational Quantization		Summary/Outlook
000	0000	00	0000	00	00
Reduce	ed Phase Space	Quantization			

Note: will distinguish from deparametrization.

Observation
${\sf Classical\ histories} = {\sf integral\ curves\ of\ } {\cal H}$
\Downarrow
• Quotienting flow of \mathcal{H} \Rightarrow space of initial data.
• No Hamiltonian flow on reduced phase space.
\rightarrow cannot generate classical solutions (Clocks are not redundancies)

: inappropriate for quantization. (Only appropriate for a genuine redundancy.)

Space of initial data is isomorphic to, but not have the same representational capacity as, the space of histories.

	Global Rep (Classical)	Global Rep (Quantum)	Relational Quantization		Summary/Outlook
000	0000	00	0000	00	00
Depara	metrization D	efinition			

Note: will consider distinct from phase space reduction.

Nomenclature

Partition phase space into:

- potential clocks (partial observables).
- Dirac observables of a particular clock (complete observables).

Procedure: (Donald's talk)

- Choose a clock $T \equiv q_i \in q$
- Identify $T = \tau$ (special gauge fixing of $\mathcal{H} = 0$)
- Find Dirac observables $Q_l = q_l$, $P_l = p_i$ for $(l \neq i)$.
- The (Q, P) are the complete observables with respect to the partial observable T.
- Solve $\mathcal{H} = 0$ for $E \equiv p_i = H_i$.
- Use H_I to evolve (Q, P).
- \Rightarrow Gives (correct) classical evolution of (Q, P) in terms of T.

	Global Rep (Classical)	Global Rep (Quantum)	Relational Quantization		Summary/Outlook
000	0000	00	0000	00	00
Depara	metrization D	ifficulties			

Leads to effective evolution.

But	
 Good clocks are hard (/impossible) to find. (E.g., Philipp's talk) 	
• Dirac observables don't tell the whole story. $\Rightarrow T$ is not a Dirac observable. (Spacetime scalars??)	
 T has an ambiguous interpretation (Rovelli: observable but not predictable). 	
• Wrong physical picture for Yang–Mills (phase space reduction is).	

Difficulties are interpretational in classical theory, but physical in quantum.

	Global Rep (Classical)	Global Rep (Quantum)	Relational Quantization		Summary/Outlook
000	0000	0	0000	00	00
Quant	tum Deparamet	rization Definitio	n		

Choose a particular deparametrization wrt T:

• Complete (Dirac) observables:

$$(Q, P); \{Q, P\} = \mathbb{1} \qquad \Rightarrow \qquad (\hat{Q}, \hat{P}); [\hat{Q}, \hat{P}] = i\hbar \hat{\mathbb{1}}$$

• Evolution:

$$E = H_T(Q, P, T)$$
 \Rightarrow $-i\hbar \frac{\partial \psi}{\partial T} = \hat{H}_T(\hat{Q}, \hat{P}, T)$

 \Rightarrow gives evolution of (\hat{Q}, \hat{P}) in terms of clock parameter T.

	Global Rep (Classical)	Global Rep (Quantum)	Relational Quantization		Summary/Outlook
000	0000	00	0000	00	00
Quan	tum Deparamet	rization Difficulti	es		

Leads to effective notion of evolution.

But
 Good clocks are hard (/impossible) to find. ⇒ Serious (/insurmountable) ordering ambiguities.
• Different clock choices are unitarily inequivalent. \Rightarrow T takes classical values, but is an operator for different clock choice.
 Conflict: Dirac observables violate our Fundamental Principle. The status of T is physically restrictive in quantum theory.
\Rightarrow Need a way to represent all phase space functions as quantum observables AND recover the correct classical limit.

	Global Rep (Classical)	Global Rep (Quantum)	Relational Quantization		Summary/Outlook
000	0000	00	0000	00	00
Classic	al Ontology				

Proposal

- Identify all non-redundant phase space functions (q, p) with classical observables ≡ mutables.
- Evolution of mutables generated by \mathcal{H} :

$$\dot{q} = \{q, \mathcal{H}\}$$
 $\dot{p} = \{p, \mathcal{H}\}$

- Solutions are curves on phase space parametrized by unobservable label au.
- Can use solution to express evolution of any mutable in terms of any other.

 \Rightarrow ontological shift: clock variables are considered observable.

	Global Rep (Classical)	Global Rep (Quantum)	Relational Quantization		Summary/Outlook
000	0000	00	0000	00	00
Advant	ages				

- Phase space evolution is integrable in τ .
- Can handle "winding numbers".
- Role of clock is non-ambiguous.

	Global Rep (Classical)	Global Rep (Quantum)	Relational Quantization		Summary/Outlook
000	0000	00	0000	00	00
Quantı	ım Proposal				

• Mutables become operators that define the quantum observable algebra.

$$(q,p); \{q,p\} = \mathbb{1} \qquad \Rightarrow \qquad (\hat{q},\hat{p}); [\hat{q},\hat{p}]$$

• Evolution of mutables generated by $\hat{\mathcal{H}}$:

$$\hat{q}(au)=e^{-i\hbar au\hat{\mathcal{H}}}\hat{q}(0)e^{i\hbar au\hat{\mathcal{H}}}\qquad\hat{
ho}(au)=e^{-i\hbar au\hat{\mathcal{H}}}\hat{
ho}(0)e^{i\hbar au\hat{\mathcal{H}}}$$

- τ arbitrary unobservable label.
- Equivalent to Schrödinger evolution

$$-i\hbar rac{\partial \psi}{\partial au} = \hat{\mathcal{H}}(\hat{q}, \hat{p})\psi$$

Note: $\hat{\mathcal{H}}(\hat{q}, \hat{p})$ is τ -independent

 \therefore "energy" (or some coupling) promoted from coupling constant to conserved quantity.

 \Rightarrow classical limit reproduced (energy eigenstate is superselected in classical limit)

	Global Rep (Classical)	Global Rep (Quantum)	Relational Quantization		Summary/Outlook
000	0000	00	0000	00	00
Advantages					

- Evolution is unitary in τ .
- All potential clocks can be described quantum mechanically.
- Unifying framework for partial/complete observables program: $\Rightarrow \text{ If } \hat{q}_i = \hat{T} \text{ is such that } \hat{T} \approx \langle \hat{T} \rangle \hat{\mathbb{1}} \text{ then we reproduce standard clock}$ deparametrization
- Our Fundamental Principle is implemented.

	Global Rep (Classical)	Global Rep (Quantum)	Relational Quantization	Gravity	Summary/Outlook
000	0000	00	0000	0	00
Shape	Dynamics				

- Split time diffeomorphisms into:
 - **1** Hypersurface preserving (i.e., global reparametrizations)
 - Hypersurface deforming (i.e., local refoliations)
- Identify:

 - 2 local refoliations \Rightarrow redundancy

Observation

 \exists global time such that non-redundant (reduced) phase space is locally scale invariant.

Ontological shift: scale invariance suggests preferred foliation.

 \Rightarrow gravity expressed in terms of the dynamics of scale invariant local "shapes":

One damn shape after another!

Rel	Relational Quantization of Gravity							
				00				
	Global Rep (Classical)	Global Rep (Quantum)	Relational Quantization	Gravity	Summary/Outlook			

- Use Shape Dynamics to fix global time.
 - \Rightarrow non-redundant phase space is fixed by imposing local scale invariance.
- Relationally quantize Shape Dynamics.

	Global Rep (Classical)	Global Rep (Quantum)	Relational Quantization		Summary/Outlook
000	0000	00	0000	00	•O
Summa	ary/Outlook				

Summary

- Fundamental Principle (FP): Time can, in principle, be measured by a clock.
 - \Rightarrow Clock values are observable.
- Standard deparametrization in conflict with FP. ⇒ clocks are not Dirac observables.
- Promote clocks to observables (mutables).
- Mutables evolve unitarily wrt unobservable parameter.
- Can reproduce classical limit, implement FP, and not privilege any clock choice quantum mechanically.

Outlook

- Mini-superspace quantization.
- Nabu-Goto string quantization: Feynman versus Hadamard propagator.

Thank You!