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Fundamental Postulate

It is possible, in principle, to measure time
using a clock.
= clock readings are observables.
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Negative Argument for Reduced Phase Space and Dirac Quantization

Clock readings are observable

I

Global reparametrizations do not reflect a redundancy at the level of phase
space variables.

Space of Solutions

What the space of solutions is:

@ The space of valid initial data for the classical evolution problem.
= meaningless without a notion of evolution.

AND NOT

@ A physical (i.e., reduced) phase space (no evolution).
= consequence of a redundancy.

Thus:
A quantization of the space of solutions does not capture the physics of our
Fundamental Postulate = clocks not treated as observable.
This applies to:
@ Reduced phase space quantization.
@ Dirac quantization.
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Our Proposal (In Brief)

For globally reparametrization invariant theories:

Relational Quantization

@ Observables (mutables): Full non-redundant phase space, (g, p).

o Classical evolution: integral curves of the Hamiltonian constraint, #,
labelled by unobservable parameter 7

q:{q>H} p={p,7—l}

@ Quantum evolution: mutable algebra evolves according to

a(r) = e Ha(0)e™  p(r) = e T p(0)e

= Time Dependent Schrodinger equation.

For gravity:

Shape Dynamics

@ Fix local time by requiring local scale invariance = Shape Dynamics.

o Relationally quantize Shape Dynamics.
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The “Global” in Global Reparametrization

Invariance of Action

Action S = [drL(q, g) invariant under
T — f(7)

Note:
e 7 - Single time variable (not a function of X).

@ g - can be a field on X.

Caveat

| A\

L - homogeneous of degree 1 in g.
= Hamiltonian constraint H = 0.

N

Classical solutions are integral curves of H labelled by 7.
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Reduced Phase Space Quantization

Note: will distinguish from deparametrization.

Observation

Classical histories = integral curves of H

I

@ Quotienting flow of H = space of initial data.

@ No Hamiltonian flow on reduced phase space.

= cannot generate classical solutions. (Clocks are not redundancies.)
.. inappropriate for quantization. (Only appropriate for a genuine redundancy.)

V.

Space of initial data is isomorphic to, but not have the same representational
capacity as, the space of histories.
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Deparametrization Definition

Note: will consider distinct from phase space reduction.

Nomenclature

Partition phase space into:
@ potential clocks (partial observables).

@ Dirac observables of a particular clock (complete observables).

Procedure: (Donald’s talk)
@ Choose aclock T=gqgi € g
o Identify T = 7 (special gauge fixing of H = 0)
e Find Dirac observables Q; = q;, P, = p; for (I # ).

@ The (Q, P) are the complete observables with respect to the partial
observable T.

@ Solve H =0 for E = p; = H;,.
e Use H, to evolve (Q, P).

= Gives (correct) classical evolution of (Q, P) in terms of T.
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Deparametrization Difficulties

Leads to effective evolution.

But...
@ Good clocks are hard (/impossible) to find. (E.g., Philipp’s talk)

@ Dirac observables don't tell the whole story.
= T is not a Dirac observable. (Spacetime scalars??)

@ T has an ambiguous interpretation (Rovelli: observable but not
predictable).

e Wrong physical picture for Yang—Mills (phase space reduction is).

Difficulties are interpretational in classical theory, but physical in quantum.
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Quantum Deparametrization Definition

Choose a particular deparametrization wrt T:

e Complete (Dirac) observables:
(QPy{Q.Pr=1 = (QP)[Q P =il
e Evolution:

E=Hr(Q,P,T) = —ih—= = [ (Q,P, T)

= gives evolution of (Q, P) in terms of clock parameter T.
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Quantum Deparametrization Difficulties

Leads to effective notion of evolution.

Good clocks are hard (/impossible) to find.
= Serious (/insurmountable) ordering ambiguities.

Different clock choices are unitarily inequivalent.
= T takes classical values, but is an operator for different clock choice.

Conflict: Dirac observables violate our Fundamental Principle.

@ The status of T is physically restrictive in quantum theory.

= Need a way to represent all phase space functions as quantum observables
AND recover the correct classical limit.
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Classical Ontology

o Identify all non-redundant phase space functions (g, p) with classical
observables = mutables.

o Evolution of mutables generated by H:

q:{q>H} P:{P,H}

@ Solutions are curves on phase space parametrized by unobservable label 7.

@ Can use solution to express evolution of any mutable in terms of any other.
v

= ontological shift: clock variables are considered observable.
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Relational Quantization
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Advantages

@ Phase space evolution is integrable in 7.
e Can handle “winding numbers”.

@ Role of clock is non-ambiguous.
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Quantum Proposal

@ Mutables become operators that define the quantum observable algebra.
(g.p)i{q,p} =1 = (4,p):14,p]
e Evolution of mutables generated by H:
a(T) _ e—[ﬁT’):ta(O)eihT';fL i\)(T) _ e—ih,T’):tij(o)eihT']:l

T - arbitrary unobservable label.

e Equivalent to Schrddinger evolution

., Oy N

—ih— ="H(§q,p
o (@, p)y

Note: 7—?(&, p) is T-independent

*. “energy” (or some coupling) promoted from coupling constant to conserved

quantity.

= classical limit reproduced (energy eigenstate is superselected in classical

limit)
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Advantages

e Evolution is unitary in 7.

All potential clocks can be described quantum mechanically.

Unifying framework for partial/complete observables program:
= If § = T is such that T ~ (T)1 then we reproduce standard clock
deparametrization

Our Fundamental Principle is implemented.
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[ 1]

Shape Dynamics

@ Split time diffeomorphisms into:

@ Hypersurface preserving (i.e., global reparametrizations)
@ Hypersurface deforming (i.e., local refoliations)

o Identify:

@ Global reparametrization = evolution
@ local refoliations = redundancy

Observation

3 global time such that non-redundant (reduced) phase space is locally scale
invariant.

Ontological shift: scale invariance suggests preferred foliation.
= gravity expressed in terms of the dynamics of scale invariant local “shapes”:

One damn shape after another!
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Relational Quantization of Gravity

@ Use Shape Dynamics to fix global time.
= non-redundant phase space is fixed by imposing local scale invariance.

o Relationally quantize Shape Dynamics.
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Summary/Outlook
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Summary/Outlook

e Fundamental Principle (FP): Time can, in principle, be measured by a
clock.
= Clock values are observable.

e Standard deparametrization in conflict with FP.
= clocks are not Dirac observables.

@ Promote clocks to observables (mutables).
@ Mutables evolve unitarily wrt unobservable parameter.

@ Can reproduce classical limit, implement FP, and not privilege any clock
choice quantum mechanically.

@ Mini-superspace quantization.

o Nabu—Goto string quantization: Feynman versus Hadamard propagator.

\
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Thank You!
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