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Words of Wisdom?

That the (canonical) quantization of general relativity
leads to a timeless formalism should be understood as a
consequence of an incorrect treatment of the temporal
symmetries of the classical theory. By treating local
temporal labellings as entirely unphysical, and change
as entirely relational, we do not retain in the quantum
formalism the full classical dynamics or the implicit
temporal-ordering structure.

(Gryb and Thébault, 2015, 5)
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What is Orthodoxy?

• First-class constraints generate gauge transformations

• “as generating functions of infinitesimal contact transformations, [the
primary first-class constraints] lead to changes in the q’s and the p’s that
do not affect the physical state” (Dirac, 1964, 21)

• “one postulates that different phase space points x1, x2 describe the same
physical state if they are connected by a gauge transformation. Here a
gauge transformation is a transformation which is generated by the
constraints...” (Dittrich, 2007, 1894)

The view is particularly clear from a geometrical perspective...
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The Geometrical Perspective on Hamiltonian Mechanics

T∗Q is a symplectic manifold (M,ω). We can use ω to
associate a vector field Xf with any given function f on
M via:

ω(Xf , ·) � df.

We can then define the Poisson Bracket:

{f, g} B ω(Xf , Xg) �
(
∂f
∂qi

∂g
∂pi
− ∂f
∂pi
∂g
∂qi

)

Phase space curves represent physically possible
histories iff they are the integral curves of XH, where
ω(XH , ·) � dH.
The evolution of an arbitrary quantity, f, is given by:

ḟ � {f,H}.
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Constrained Hamiltonian Dynamics

If a theory’s Lagrangian is (quasi-)invariant under the action of a group
parametrized by arbitrary functions of the independent variables:

• the pi are not independent but must satisfy “primary” constraints
φn(p, q) � 0, so

• The Hamiltonian dynamics lives on a proper subspace of T∗Q, the
“constraint surface”, defined by φn(p, q) � 0 (and any “secondary”
constraints).



Orthodoxy (Geometrical Version)

• Restricting the canonical symplectic form ω on T∗Q to the constraint
surfaceN defines a presymplectic form σ onN.

• x and y lie in the same gauge orbit iff they are connected by a curve whose
tangent vector is everywhere in the kernel of σ.

• One can view as dynamical trajectories integral curves of XH where
σ (XH , ·) � dH and H is an appropriate a gauge-invariant function onN.

• The dynamics is indeterministic, but the dynamics of gauge-invariant
quantities is deterministic: only functions onN that are constant on gauge
orbits correspond to genuine physical magnitudes.

What is the connection between this geometrical perspective and the dynamics
framed in terms of the Poisson bracket on the full phase space T∗Q?
(Lagrangian equivalence vs the “extended” Hamiltonian)
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Different Notions of Gauge

Gauge1 x and y are points of a presymplectic manifold that lie in the
same gauge orbit (as defined previously).

Gauge2 x and y represent the same physical state/history

• one treats gauge1-related points of I as gauge2-related, therefore

• one treats gauge1-related solutions, s1 and s2, as gauge2-related.
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Some Examples

1. A “Leibnizian” particle theory
(≈ 1977 Barbour–Bertotti theory with absolute time):
• L � V − TBB, where

V � −
∑
i<j

mimj

rij
and TBB �

∑
i<j

mimj

rij

(
drij
dt

)2
rij B |qi − qj |

• Arbitrary time-dependent rotations and translations as gauge symmetries.

• Points within a gauge orbit of I correspond to the same relative particle
configuration.

2. Electromagnetism (?)



PoT: Applying Orthodoxy to GR is Prima Facie Absurd

• The Hamiltonian of GR is a sum of first-class constraints (it is a “totally
constrained” Hamiltonian system): all points on any given dynamical
trajectory lie within the same gauge orbit.

• A function that commutes with all the first class constraints will commute
with the Hamiltonian: no gauge-invariant quantity takes on different
values at different points of a dynamical trajectory.

The task: a clear understanding of why orthodoxy is not applicable to GR.
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Challenge 1

Pitts, J. B. (2014). “A first class
constraint generates not a gauge
transformation, but a bad physical
change: The case of
electromagnetism.” Annals of Physics
351, 384–406.



Hamiltonian Electromagnetism

• L � − 1
4FμνF

μν ; Fμν � ∂μAν − ∂νAμ

• Hc �
∫
dx [ 12 (π⃗2

+ B⃗2) + π⃗ · ∇A0]

πμ are the variables canonically conjugate to Aμ. Defined in terms of the
Lagrangian, πμ � −F0μ, so:
• π⃗ is the electric field, and

• π0 ≈ 0 is a primary constraint.

Stability of this constraint under the Hamiltonian dynamics leads to a secondary
constraint:

• π̇0
� {π0 ,Hc} � ∇ · π⃗ ≈ 0.

Both constraints are first class.
The πμ are left unchanged by transformations generated by the constraints.
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Pitts (2014): FCCs Generate Bad Physical Changes

Transformations generated by π0

δAμ (x) �
{
Aμ (x),

∫
d3yπ0ξ (t, y)

}
� δ0μξ (t, x), so

δFμν � ∂μξδ
0
ν − ∂νξδ0μ , and so

δF0n � −δE⃗ � −∂nξ .

In general ∇ · E⃗ � 0 7→ ∇ · E⃗+ ∇2ξ , 0.

Transformations generated by ∇ · π⃗

δAμ (x) �
{
Aμ (x),

∫
d3yπ i

,iε(t, y)
}
� −δ iμ

∂

∂xi
ε(t, x), leading to

δF0n � −δE⃗ � −∂n∂0ε; ∇ · E⃗ 7→ ∇ · E⃗+ ∇2ε̇.
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Recovering the “Gauge Generator”

In general:

δAμ (x) �
{
Aμ (x),

∫
d3y[π0ξ (t, y) + π i

,iε(t, y)]
}
� δ0μξ − δ iμ

∂

∂xi
ε ,

which leads to:
δF0n � −δE⃗ � −∂nξ − ∂n∂0ε.

One obtains δF0n � 0 by setting ξ � −ε̇.
This is the form taken in electromagnetism of the “gauge generator”, discussed
in the work of Castellani, and Pons, Shepley and Salisbury. One has, for
G �

∫
d3x(π i

,iε − π0ε̇):

δAμ � {Aμ ,G} � −∂με.

Does this undermine orthodoxy?
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Orthodoxy Unscathed
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Challenge 2

Barbour, Julian, and Brendan Z. Foster. “Constraints and gauge
transformations: Dirac’s theorem is not always valid.” arXiv preprint
arXiv:0808.1223 (2008).



Dirac’s Argument

Consider the infinitesimal change in some quantity g after a short time δt.

g(δt) � g0 + ġδt

� g0 + {g,HT}δt
� g0 + δt({g,HF} + va{g, γa})

But the v’s are arbitrary. With different functions v′ we get a different g(δt).

Δg(δt) � δt(va − v′a){g, γa},
� εa{g, γa}, with

εa � δt(va − v′a).

This is the expression for an infinitesimal change generated by γa.
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Varieties of Gauge Redundancy
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Moral: one need not identify “gauge-related” points

Finally, a word of caution. The arguments leading to the identification of [the
first class constraints] as generators of transformations that do not change the
physical state at a given time implicitly assume that the time t…is observable.
That is information brought in from the outside. One may also take the point of
view that some of the gauge arbitrariness indicates that the time itself is not
observable. This is done in so-called generally covariant theories…One of the
arbitrary functions is then associated with reparametrizations t→ f(t) of the
time variable.

(Henneaux and Teitelboim, 1992, 18-9)
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A Simple Reparamatrization Invariant Theory

Jacobi’s Principle:

IJ �

∫ B

A
LJ � 2

∫ B

A
dλ

√
(E − V)T

The Hamiltonian is given by:

H �

∑
i

pi · q̇i − LJ � Nh, where

N �

√
T

E − V and h �
1
2

∑
i

pi · pi + V − E

Given the definition of pi,

pi � q̇i/N h ≈ 0

h is a primary first-class constraint.



No Indeterminism at the Level of Phase Space

• Dynamical trajectories are integral curves of
Xh, where σ (Xh , ·) � dh, but h ≈ 0.

• Xh does two things:
▶ defines a path in I
▶ provides a parameterization.

• Distinct Xh define the same paths.

• There is no apparent indeterminism at the
level of paths
▶ No gauge redundancy in functions on phase
space.

• Only the evolution of such quantities as
functions of parameter time is undetermined.
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Types of Gauge Transformation: Recap

• Maps from points to physically equivalent points

• Maps that leave images of solution curves invariant but change the
paramaterization

There is no pressure (from the requirement of determinism) to require that
genuine physical magnitudes weakly commute with the constraint that
generates the latter.

Unfortunately there can be a third type of gauge redundancy: maps that map
paths to distinct, but physically equivalent, paths without mapping points to
physically distinct points.

The problem of refoliation invariance.
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The Partial Observables Proposal (Rovelli and co.)

it has been claimed that although the problem of time in GTR is not a
pseudo-problem, neither is it intractable since common sense B-series change
can be described in terms of the time independent correlations between gauge
dependent quantities which change with time. (Earman, 2002, 15)

Aside: this is also the right way to think about theories without gauge
redundancy (when interpreted as cosmological theories).



The Partial Observables Proposal (Rovelli and co.)

it has been claimed that although the problem of time in GTR is not a
pseudo-problem, neither is it intractable since common sense B-series change
can be described in terms of the time independent correlations between gauge
dependent quantities which change with time. (Earman, 2002, 15)

Aside: this is also the right way to think about theories without gauge
redundancy (when interpreted as cosmological theories).



Earman on Coincidence Quantities

it remains a bit obscure how the value of this coincidence observable is
measured. For if the parametrized description is taken seriously, the measuring
procedure cannot work by verifying that the coincidence of values described in
the equation for Xȳ does in fact take place by separately measuring the values of
the clock variable and the oscillator position and then checking for the
coincidence. (Earman, 2002, 13)

No, that’s exactly how the measuring procedure works.
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Against the Proposal

The problem is that all of our observations must be expressed in terms of the
physically measurable quantities of the theory, namely those combinations of
the dynamic variables which are [gauge invariant and therefore] independent of
time. One cannot try to phrase the problem by saying that one measures the
gauge dependent variables, and then looks for time independent correlations
between them, since the gauge dependent variables are not measurable
quantities within the context of the theory. (Unruh, 1991, 266)



Against the Proposal

The problem is that all of our observations must be expressed in terms of the
physically measurable quantities of the theory, namely those combinations of
the dynamic variables which are [gauge invariant and therefore] independent of
time. One cannot try to phrase the problem by saying that one measures the
gauge dependent variables, and then looks for time independent correlations
between them, since the gauge dependent variables are not measurable
quantities within the context of the theory. (Unruh, 1991, 266)



Plan

1. Orthodoxy

2. Pitts’s Challenge

3. Barbour and Foster’s Challenge

4. Morals



The Block Universe

This is not a case of “emergent time”!



The Block Universe

This is not a case of “emergent time”!



The Wheeler–DeWitt Equation

• Apply Dirac constraint quantization to Hamiltonian GR

• Physical states are those invariant under transformations generated by the
quantum constraints.

• The result…
H|Ψ⟩ � 0

• Which notion of gauge does this presuppose?

What’s wrong with a naively temporal (Everettian) understanding of transition
probabilities between components of |Ψ⟩?
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