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A brief history of Hamilton-Jacobi approaches to quantum gravity

Questions to be addressed

What is the status of four-dimensional diffeomorphism
covariance in the Hamiltonian formulation of classical general
relativity?

What relationship do observables bear to this underlying
symmetry?

Is time a classical observable?

What is the relation between the Wheeler-DeWitt equation,
the Einstein-Hamilton-Jacobi equation from which it is
derived, and general covariance?

How can a 4-diffeomorphism invariant time emerge in a
semi-classical Wheeler-DeWitt approach to quantum gravity?
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A brief history of Hamilton-Jacobi approaches to quantum gravity

2. A BRIEF HISTORY OF HAMILTON-JACOBI APPROACHES
TO QUANTUM GRAVITY
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A brief history of Hamilton-Jacobi approaches to quantum gravity

The old quantum theory as semiclassical quantum theory

Pages from Schrödinger’s notebook.
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A brief history of Hamilton-Jacobi approaches to quantum gravity

The role of Hamilton-Jacobi theory in anticipating
structures of quantum theory

The optical mechanical analogy has its roots in Hamilton’s
original introduction of his characteristic function in 1837.
This is the same function that appears in the
Sommerfeld-Epstein rule.

The Hamilton principal function S as a phase is consistent
with the Schrödinger wave equation in the limit ~→ 0 The
power series expansion of S in ~ was first introduced
independently by Wentzel and Brillouin in 1926. They in turn
with Kramers in 1926 established the general conditions under
which Sommerfeld-Epstein quantization agreed with wave
mechanics. See Pauli’s 1933 Handbuch der Physik article for
an overview.
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A brief history of Hamilton-Jacobi approaches to quantum gravity

The role of Hamilton-Jacobi theory in anticipating
structures of quantum theory

As also noted 1926, semi-classical wave packets that satisfy
the correct classical equations of motion may be constructed
through the superposition over complete principal function
solutions of the Hamilton-Jacobi equation. These
superpositions are of the form∫

dαe iS(x ,t;α)

The result follows as a consequence of the Hamiltonian
dynamical equations

These observations served as a point of departure of Peter
Weiss’s groundbreaking extension of the Hamilton-Jacobi
formalism to field theory in 1936 [Weiss, 1936].
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A brief history of Hamilton-Jacobi approaches to quantum gravity

Dirac in 1951 on the significance of Hamilton-Jacobi

From Dirac’s 1951 foundational paper on constrained Hamiltonian
dynamics, “The Hamiltonian form of field dynamics” [Dirac, 1951]
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A brief history of Hamilton-Jacobi approaches to quantum gravity

Dirac in 1951 on the significance of Hamilton-Jacobi
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A brief history of Hamilton-Jacobi approaches to quantum gravity

The standard approach to semiclassical canonical
quantization of gravity

Let us now look more closely at the promise and at the limitations
of the standard approach to a semi-classical canonical quantization
of general relativity via the Wheeler-DeWitt equation. It was
inspired by a so-called Einstein-Hamilton-Jacobi equation first
written down by Peres in 1962 [Peres, 1962].
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A brief history of Hamilton-Jacobi approaches to quantum gravity

Einstein-Hamilton-Jacobi equation

Peres replaced the canonical momenta pab in the Hamiltonian
constraint

H0 = −√g 3R +
1
√

g

(
pabpab −

1

2
p2

)
= 0,

with a functional derivative of a Hamilton principal function S with
respect to the spatial metric field gab. It is important to note that
this replacement was not derived by Peres from a variation of the
gravitational action.

This equation inspired Bryce DeWitt. In his own words, from his
1999 paper “The Quantum and Gravity: The Wheeler-DeWitt
equation”: [DeWitt, 1999]
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A brief history of Hamilton-Jacobi approaches to quantum gravity

Origins of the Wheeler-DeWitt Equation according to
DeWitt

“John Wheeler, the perpetuum mobile of physics, called me one
day in the early sixties. I was then at the University of North
Carolina in Chapel Hill, and he told me that he would be at the
Raleigh-Durham airport for two hours between planes. He asked if
I could meet with him there and spend a while talking quantum
gravity. John was pestering everybody at the time with the
question: What are the properties of the quantum mechanical
state functional Psi and what is its domain? He had fixed in his
mind that the domain must be the space of 3-geometries, and he
was seeking a dynamical law for Psi.”
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A brief history of Hamilton-Jacobi approaches to quantum gravity

Origins of the Wheeler-DeWitt Equation according to
DeWitt

“I had recently read a paper by Asher Peres which cast Einstein’s
theory into Hamilton-Jacobi form, the Hamilton-Jacobi function
being a functional of 3-geometries. It was not difficult to follow
the path already blazed by Schrödinger, and write down a
corresponding wave equation. This I showed to Wheeler, as well as
an inner product based on the Wronskian for the functional
differential wave operator. Wheeler got tremendously excited at
this and began to lecture about it on every occasion.”
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A brief history of Hamilton-Jacobi approaches to quantum gravity

Origins of the Wheeler-DeWitt Equation according to
DeWitt

“I wrote a paper on it in 1965, which didn’t get published until
1967 because my Air Force grant was terminated and the Physical
Review in those days was holding up publication of papers whose
authors couldn’t pay the page charges. My heart wasn’t really in it
[...] But I thought I should at least point out a number of
intriguing features of the functional differential equation, to which
no one had yet begun to devote much attention: [...] The fact that
the wave functional is a wave function of the universe and
therefore cannot be understood except within the framework of a
many-worlds view of quantum mechanics [...] In the long run one
has no option but let the formalism provide its own interpretation.
And in the process of discovering this interpretation one learns that
time and probability are both phenomenological concepts.”
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Lessons of the relativistic free particle model

3. LESSONS OF THE RELATIVISTIC FREE PARTICLE MODEL
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Lessons of the relativistic free particle model

The free particle action

Consider the reparamterization covariant free particle action

S = −
∫

(−q̇2)1/2dθ =

∫
Ldθ.

I review a technique for employing this action to construct a
classical and quantum model that establishes a dynamical
correlation between observable variables, recognizing that the
parameter θ is itself not observable. Our task is to relate this
parameter to a measurable physical quantity.
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Lessons of the relativistic free particle model

The free particle action increment

The standard point of departure is to is to consider two
independent changes to slightly different solutions of the equations
of motion. The first independent variation is characterized by the
fact that the new solutions have the same value of configuration
variables at a slightly increased final evolution parameter as the
original solutions had at the original final evolution time. The
second variation simply alters the configuration variables at at the
original final evolution time. I put some stress on this procedure
since it appears not to be well appreciated that this procedure can
be carried out also for singular systems, as in this model.
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Lessons of the relativistic free particle model

The free particle action increment

The result in this case is

dS =
∂L

∂q̇µ
dqµ −

(
∂L

∂q̇µ
q̇µ − L

)
dθ =: p̃µdqµ − H̃(q̇)dθ.

We notice of course that this is a singular system; the momenta
p̃µ(q̇) := ∂L

∂q̇µ = q̇µ(−q̇2)−1/2 are not independent. In fact, since
the Lagrangian is homogeneous of degree one in the velocities,
H̃ := ∂L

∂q̇µ q̇µ − L ≡ 0. The constraint takes the form p̃2 + 1 ≡ 0,

and we have H̃ = (−q̇2)1/2
(
p̃2 + 1

)
.
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Lessons of the relativistic free particle model

A free particle intrinsic time

We now ask how we can gain information from dS on the
measurable physical evolution of the single particle system. In this
case the answer is clear. We could simply choose the
reparametrization scalar q0 as the evolution time. In doing so we
establish a relation between the in principle measureable spatial
position of the particle and the measurable Minkowski time q0.
This is a choice of intrinsic time - intrinsic in the sense that the
evolution parameter itself is measurable.

As we shall see, there is in general a two step procedure for doing
this.
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Lessons of the relativistic free particle model

Step 1 of intrinsic coordinate fixation procedure

In this particular case the first step is already accomplished since
q0 is already a configuration space variable. But in order to stress
the fact that the isolation of the q0(θ) does not automatically
imply that one has made an intrinsic coordinate choice I point out
that this variable does undergo variations under the
reparameterizations of the form θ′ = θ − (−q̇2)−1/2ξ(θ). The
phase space generator of these variations is G (ξ) = ξ

2 H.
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Lessons of the relativistic free particle model

“Hamilton-Jacobi” equation does not fix an intrinsic
parameter

Since we have not yet made a parameter choice we have a phase
space constraint H = 0. Then it is natural to ask what would be
the consequence of representing the momenta in the constraint as
pµ = ∂S

∂qµ and interpreting the constraint as a differential equation
to be satisfied by S . In other words, look for solutions of

ηµν
∂S

∂qµ
∂S

∂qν
+ 1 = 0.

It is significant for us that solutions of this equation do not give us
directly solutions qµ(θ) of the reparameterization covariant
Euler-Lagrange equations. Additional information is required.
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Lessons of the relativistic free particle model

“Hamilton-Jacobi” equation does not fix an intrinsic
parameter

Given a solution S , we can set

pµ =
∂S

∂qµ
, (1)

Then we appeal to the Hamiltonian equation q̇µ = λ(θ)pµ where
we pick the function λ, obtaining the first order differential
equation q̇µ = ∂S

∂qµ which can then be integrated. The point is
that only when this function has been selected have a made a
choice of gauge. In other words, the “Hamilton-Jacobi equation”
continues within this formalism to be a constraint, and we have
simply managed to solve the constraint. This is the reason that I
have enclosed the expression in quotation marks. It is not a true
Hamilton-Jacobi equation.
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Lessons of the relativistic free particle model

Step 2 of intrinsic coordinate fixation procedure

Of course, what really motivates our interest in this example is the
means that is available to find qa as a function of q0. In other
words, we want to make an explicit intrinsic parameter choice. And
there is a natural way of doing this using the “Hamilton-Jacobi
equation”. It does give us directly S as a function of qa, q0 and of
three independent constants αa. And solutions for qa as a function
of q0 can be obtained in the usual manner in Hamilton-Jacobi
theory by taking derivatives ∂S

∂αa . Thus the “Hamilton-Jacobi
equation” brings with it a natural choice of intrinsic parameter -
due to the fact that this natural choice is one of the configuration
variables!
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Lessons of the relativistic free particle model

Step 2 of intrinsic coordinate fixation procedure

It is also possible to make the intrinsic parameter choice directly in
the action increment dS . We simply interpret q0 as the evolution
parameter and the momenta as phase space variables - subject of
course to the constraint. Thus we can solve for
p0 = − (papa + 1)1/2 := Hintrinsic , so that the increment in the
action in intrinsic coordinates is

dS = −Hintrinsicdq0 + padqa.

From this expression we deduce the true intrinsic Hamilton-Jacobi
equation

∂S

∂q0
+

(
∂S

∂qa

∂S

∂qa
+ 1

)1/2

= 0.
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Lessons of the relativistic free particle model

Reparameterization invariant variable

Finally, although it is obvious that the intrinsic dynamics does not
depend on the parameter θ, and is thus invariant under
reparameterizations, it is instructive to see how this intrinsic choice
yields variables expressed in terms of the qµ(θ) in an arbitrary
parameterization but which are invariant under
reparameterizations. These invariant variables are (See
[Pons et al. , 2009b])

Iqa = qa(θ) +
pa

p0
q0(θ)− pa

p0
θ.

The coefficients of each power of θ are invariant under the active
transformations generated by G (ξ). This means that when we go
to the quantum theory and we consider wave functions ψ(Iqa , θ),
these wave functions will satisfy Ĥψ(Iqa , θ) = 0.
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Intrinsic coordinates and gauge fixing in general relativity

4. INTRINSIC COORDINATES AND GAUGE FIXING IN
GENERAL RELATIVITY
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Intrinsic coordinates and gauge fixing in general relativity

The realization of the full diffeomorphism group in phase
space

A misunderstanding of the role of constraints has led to many of
the errors in both the formulation and in the interpretation of the
Wheeler-DeWitt equation. We will show that the appropriate
phase space formalism that will admit the incorporation of the
quantum of action and retain the full four-dimensional
diffeomorphism symmetry is a formalism that retains the lapse and
shift as configuration variables. This will in turn yield a fruitful
fully covariant semi-classical approach to quantum gravity. (See
[Pons et al. , 1997] [Pons & Salisbury, 2005] [Pons et al. , 2009a] )
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Intrinsic coordinates and gauge fixing in general relativity

The diffeomorphism-induced canonical transformation
group

Global translations in time (time evolution) are not realizeable
in general relativity as a canonical phase space
transformations. This is commonly known - though not fully
appreciated - as the decomposition of infinitesimal
diffeomorphims into hypersurface tangential and perpendicular
transformations

δxµ = δµa ξ
a + nµξ0.

The notion of “multi-fingered” time was introduced by
Kuchar in 1972 [Kuchǎr, 1972] before it was understood that
the full 4-diffeomorphism-induced group could be realized as a
canonical transformation group.
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Intrinsic coordinates and gauge fixing in general relativity

The diffeomorphism-induced canonical transformation
group

Global rigid translation in time is generated in a fixed gauge by the
Rosenfeld-Bergmann-Dirac Hamiltonian (also known as the ADM
Hamiltonian)

HRBD =

∫
d3x (NµHµ + λµπµ) ,

where the λµ are spacetime functions, related via the Hamiltonian
equations of motion to time rates of change of the lapse and shift,

∂Nµ

∂t
= λµ.
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Intrinsic coordinates and gauge fixing in general relativity

The diffeomorphism-induced canonical transformation
group

General infinitesimal diffeomorphism-induced transformations of
the full 4-metric and conjugate momenta are generated by

Gξ(t) =

∫
d3x

(
Pµξ̇

µ + (Hµ + NρC ν
µρPν)ξµ

)
.

Taking into account the time-dependence of this generator, a
standard calculation demonstrates that even though the spacetime
functions λµ in the HRBD Hamiltonian are not dependent on the
phase space variables, the formalism yields the correct variation of
these functions under an arbitrary infinitesimal four-dimensional
diffeomorphism. In other words, the phase space formalism
(retaining lapse and shift as canonical phase space variables) is
fully covariant under arbitrary time coordinate foliations.
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Intrinsic coordinates and gauge fixing in general relativity

The diffeomorphism-induced canonical transformation
group

Thus the Hamiltonian and true Hamilton-Jacobi formalism is
covariant under the full four-dimensional diffeomorphism group.

Most importantly, the group can be employed to construct variables
that are invariant under the action of the 4-D diffeomorphism
group. The framework within which we work may appear at first
sight to be contrary to the spirit of general relativity. We assume
that spacetime coordinates are given and we will describe how a
physical significance can be assigned to these coordinates, namely
by relating them to measurable spacetime curvature.
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Intrinsic coordinates and gauge fixing in general relativity

The diffeomorphism-induced canonical transformation
group

The diffeomorphism-induced group acts actively on the phase
space variables that are taken to be functions of these fixed
spacetime coordinates. Similarly to particle model, our task is to
identify functionals of these variables that can serve as spacetime
landmarks, i.e., intrinsic coordinates. Once this choice is made we
will have succeeded in establishing univocal correlations between
these landmarks and remaining phase space variables. These
correlations are invariant under the action of the group, just as the
relation between q0 and qa is insensitive to the active action of the
reparameterization group.



Intrinsic H-J GR

Intrinsic coordinates and gauge fixing in general relativity

Intrinsic coordinates must be spacetime scalars

Intrinsic coordinates must be spacetime scalars as one can see with
this simple argument : We suppose that the coordinates xµ have
been fixed by the condition that xµ = Xµ(g(x), p(x)). We
investigate how this relation transforms under a change of
coordinates x ′µ = f µ(x). Then we must have

x ′µ = f µ(x) = f µ (X (g(x), p(x)) = f µ
(
X (g ′(x ′), p(x))

)
,

We deduce that since f is arbitrary,

Xµ(g(x), p(x)) = Xµ(g ′(x ′), p′(x ′)). (2)

In other words, the Xµ must be spacetime scalar functions.



Intrinsic H-J GR

Intrinsic coordinates and gauge fixing in general relativity

Intrinsic coordinates must be spacetime scalars

It has been shown that if the scalar condition is satisfied then no
physical solutions are eliminated, and if is not satisfied then the
fixation of coordinates is not unique [Pons et al. , 2010].
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Intrinsic coordinates and gauge fixing in general relativity

Scalar spacetime curvature candidates

In general relativity with material sources we have at our disposal
at least fourteen scalars that can be constructed from the Riemann
curvature tensor. They generally involve quadratic or cubic powers
of this tensor.
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Intrinsic coordinates and gauge fixing in general relativity

Invariants constructed using intrinsic coordinates

It has also been shown how to construct the observables that
correspond to given intrinsic coordinate choices xµ = Xµ[gab, p

cd ]
[Pons et al. , 2009b]. The outcome is that there corresponds to
every phase space variable (including the lapse and shift) a series
expansion in powers of the intrinsic coordinates, the coefficients of
which are invariant functionals of the metric. These coefficients are
invariant in the conventional sense that variations of the metric
under changes of the coordinate parameters does not change their
values.
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The intrinsic Hamilton-Jacobi approach to general relativity

5. THE INTRINSIC HAMILTON-JACOBI APPROACH TO
GENERAL RELATIVITY
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The intrinsic Hamilton-Jacobi approach to general relativity

Gravitational action increment

We begin by writing the increment in the gravitational action as

dSGR =

∫
d3x

(
p̃abdgab + P̃µdNµ

)
−
∫

d4xNµHµ,

where the tilde signifies that the momenta are to be conceived as
configuration-velocity functions. This formula is obtained by
assuming that at a fixed final time one computes the action for a
slightly different new solution of Einstein’s equations where one
varies the final time and assumes that the values of the metric
components at the new final time coincide with the values at the
original end time in some chosen system of coordinates. Of course
when so conceived the P̃µ vanish identically. And we must satisfy
the secondary constraints Hµ = 0.
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The intrinsic Hamilton-Jacobi approach to general relativity

Implementation of intrinsic coordinates

Since spacetime scalars necessarily depend on time derivatives of
the metric, it is not immediately obvious how one can identity
them in the nonvanishing contribution to the action increment.

Fortunately, Karel Kuchǎr’s pioneering work from 1973
[Kuchar, 1973] suggests a way to proceed - via the appropriate
canonical phase space transformation. Our language and method is
however distinct. We speak not of “embeddings”, nor “bubble
time” or “multifingered time”, but rather simply canonical phase
space transformations leading to a dynamics that is still covariant
under the 4-D diffeomorphism group.
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The intrinsic Hamilton-Jacobi approach to general relativity

Implementation of intrinsic coordinates

Thus we seek a canonical transformation such that

SGR =

∫
d3x

(
pabdgab + PµdNµ

)
−
∫

d4xNµHµ
[
gab, p

cd
]

=

∫
d3x

(
pIdgI + pAdgA +

δG

δgI
dgI +

δG

δXµ
dXµ + PµdNµ

)
−
∫

d4xNµH′µ
[
gA, p

B ,Xµ, πµ

]
.

Here we let gA represent two of the components of gab, with gI
representing the remaining four and similarly for the conjugate
momenta, while the πµ are the momenta conjugate to Xµ.
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The intrinsic Hamilton-Jacobi approach to general relativity

Step 1 accomplished

This is the first step - which was not necessary in the particle
model.
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The intrinsic Hamilton-Jacobi approach to general relativity

Einstein-Hamilton-Jacobi equations

The Einstein-Hamilton-Jacobi equation - first written down by
Peres in 1962 [Peres, 1962] - is the Hamiltonian constraint

H0

[
gab,

δS

δgcd

]
= 0.

We now have countless new Einstein-Hamilton-Jacobi equations
(corresponding to different choices of intrinsic coordinates Xµ:

H0

[
gA,X

µ,
δS

δgB
,
δS

δX ν

]
= 0.

But none of these relations give a fixed coordinate choice!
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The intrinsic Hamilton-Jacobi approach to general relativity

Intrinsic Hamiltonians

There is however a “natural” coordinate choice for each choice of
Xµ, just as q0 was a natural choice of θ in the particle model. We
let xµ = Xµ. Finally, in order to respect the constraints, we solve
the constraints and the intrinsic coordinate conditions
xµ = Xµ

(
gab, p

cd
)

for gI and pJ and substitute this expressions
into πI whereby the πI become explicit functionals of gA, p

B and
xµ. Then since there is no incremental change in the X a in this
gauge, the non-vanishing contribution to the action becomes the
intrinsic canonical one-form

dSintrinsic =

∫
d3x

(
pAdgA + π0

[
gA, p

B , xµ
]

dx0
)
.
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The intrinsic Hamilton-Jacobi approach to general relativity

Intrinsic Hamiltonian and intrinsic Hamilton-Jacobi
equation

Thus we deduce that the intrinsic Hamiltonian is

Hintrinsic := −π0

[
gA, p

B , xµ
]
,

with a corresponding intrinsic Hamilton-Jacobi equation,

∂S̄

∂t
+ Hintrinsic

[
gA,

δS̄

δgB
, xµ
]

= 0.
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The intrinsic Hamilton-Jacobi approach to general relativity

Intrinsic coordinate transformations

We now have the liberty to undertake an arbitrary finite
transformation to new intrinsic coordinates X ′µ = f µ(X ). This is
merely a point transformation, and can therefore be realized in
phase space as a canonical transformation.

We require that∫
d3x Xµdπµ = −

∫
d3xπ′µdX ′µ +

∫
d3xdF

[
X ′, π

]
.
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The intrinsic Hamilton-Jacobi approach to general relativity

Intrinsic coordinate transformations

The generator is

F =

∫
d3x f −1µ(X ′)πµ,

The transformed intrinsic Hamiltonian is

H ′intrinsic = −π′0 =
δF

δX ′0
.

Thus once we have found one admissible set of intrinsic
coordinates, we now have a means of canonically transforming to
all possibe intrinsic coordinates. The freedom of choice is the
original diffeomorphism freedom!
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A cosmological example

6. A COSMOLOGICAL EXAMPLE
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A cosmological example

Robertson Walker cosmology with massless scalar source

We illustrate these ideas with a simple cosmological example, an
isotropically expanding universe with vanishing curvature,
vanishing cosmological constant, and a massless scalar source field
φ. The line element is

ds2 = −N(t)2dt2 + a(t)2(dx2 + dy 2 + dz2),

with Lagrangian

L =
1

2N

(
−6

κ
aȧ2 + a3Φ̇2

)
,

where κ := 8πG .
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A cosmological example

Intrinsic time candidate

We find that the quadratic Riemann scalar
R1 := Rαα′ββ′gββ

′γγ′Rγγ′δδ′g
δδ′αα′

, where gββ
′γγ′ := 2gβ[γgγ

′]β′
,

simplifies to a power of a2p−1
a for this highly symmetric solution.

(Bergmann and Komar showed in 1960 that all curvature scalars
can be expressed in terms of the 3-metric and conjugate momenta
[Bergmann & Komar, 1960] .)
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A cosmological example

York time

We therefore take T = 1
3κa−2pa as one of our new phase space

variables. With this choice T will range from −∞ to 0. Note that
since ȧ = −κN

6a pa, this variable is actually minus twice the Hubble
parameter N−1a−1ȧ.

It is important to note that this York time - equivalently the
extrinsic curvature 3-diffeo scalar - is a spacetime scalar only under
arbitrary infinitesimal coordinate transformations. It will be
important to learn what form this time assumes when spatial
inhomogeneities are introduced in the cosmological model.
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A cosmological example

Conjugate momentum

The momentum conjugate to T is pT = − 1
κa3. The constraint in

terms of the new variables is

H ′ =
3

4
pTT 2 −

p2
φ

2κpT
= 0.

This leads to a new Einstein-Hamilton-Jacobi equation

3

4

(
∂S

∂T

)2

T 2 −
p2
φ

2κ
= 0.

This relation does not fix φ as a function of t. The full
reparameterization freedom in t remains.
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A cosmological example

Intrinsic Hamiltonian

But there is now a natural choice. T is a new configuration
variable analogous to q0 in the particle model. Let us take t = T
and eliminate pT by solving the constraint. This delivers an
intrinsic Hamiltonian

Hintrinsic = −pT = − 1

(3κ/2)1/2

pφ
(−t)

with Hamilton-Jacobi equation

∂S

∂t
+

1

(3κ/2)1/2

1

t

∂S

∂φ
= 0.

The complete solution is

Si (φ, t;α) = e
−αφ0− α

(3κ/2)1/2
ln(−t)+αφ

where α and φ0 are constants.
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A cosmological example

Intrinsic Hamiltonian and semi-classical physics

One obtains the general classical solution for φ in the usual manner
by setting 0 = ∂Si

∂α . This insures that in passing to the quantum
theory we obtain a wave packet that follows the classical trajectory
by forming an appropriate superposition

Ψ(φ, t) =

∫
dαf (α)eSi (φ,t;α)/~.

This wave function satisfies the Schrödinger equation

Hi

(
t,−i~

∂

∂φ

)
Ψ = i~

∂

∂t
Ψ

as a consequence of the intrinsic Hamilton-Jacobi equation.
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A cosmological example

Analogue Wheeler-DeWitt approach

What if we decided to employ the analogue Wheeler-DeWitt
equation, using the transformed constraint, i.e.

3

4
p2
TT 2 −

p2
φ

2κ
= 0→

(
−3

4
t2 ∂

2

∂t2
+

1

2κ

∂2

∂φ2

)
Ψ(φ, t) = 0.

rather than the intrinsic Schrödinger equation?

Then it turns out that if solutions are assumed of the form
Ψ = e iS/~, then one can show after considerable labor, after
expanding S in powers of κ, that S satisfies the intrinsic
Hamilton-Jacobi equation. The lesson to be drawn is that the
Schrödinger equation is far more efficient.
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A cosmological example

Invariant φ

The explicit invariant φ is obtained by employing the finite
reparameterization group. It is a power series in t of nested Poisson
brackets. Only the coefficient of t0 delivers a nontrivial invariant,
namely a(t)pa(t). This is indeed a constant - independent of t.
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A cosmological example

Canonical change of intrinsic coordinate

The following canonical transformation transforms from York time
to proper time:

T ′ = −T−1 = f (T ).

Therefore according to our general prescription we can perform a
point canonical transformation to obtain the corresponding new
intrinsic Hamiltonian,

p′T ′ = pT
df −1(T ′)

dT ′
=

pφ

(3κ/2)1/2
T ′

d(−T ′)−1

dT ′
=

pφ

(3κ/2)1/2

1

T ′
.

Note that this time ranges from 0 to ∞.
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All coordinates can be expressed in terms of spacetime
scalar functionals!

But we need not stop here. We can actually imitate any choice of
time coordinate by chosing new intrinsic times as λ(T ′), for
arbitrary positive definite functions λ.

This is actually a substantiation of a general result. For every
choice of coordinates in general relativity there corresponds a
choice of intrinsic coordinates.

Thus we have in effect turned the relativity principle on its head.
For every choice of coordinates there corresponds a
curvature-based prescription of spacetime landmarks. Evolution in
terms of these landmarks is unique. Thus each and every spacetime
coordinate choice yields a physically distinguishable dynamics.
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Schrödinger equation

The natural next step to take, in complete analogy with
Schrödinger’s original quantization procedure, is to write down an
intrinsic Schrödinger equation for each choice of intrinsic
coordinates:

Hintrinsic

[
gA,−i~

δ

δgB
; xµ
]

Ψ [gA, x
ν ] = i~

∂

∂t
Ψ [gA, x

ν ] .

We are assured that we can construct the correct semiclassical

limit, for each of the choices for Xµ, from solutions of the form
Ψ = σe iS/~ where S is a complete solution of the intrinsic
Hamilton-Jacobi equation.
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Diffeomorphism group and new phase space variables

The full four-dimensional diffeomorphism-induced group is
realizeable in phase space as a canonical transformation group

Spacetime curvature based phase space variables can be found
that can serve as intrinsic temporal clocks and spatial rods.

The freedom in selecting these spacetime landmarks
corresponds to the original diffeomorphism freedom.

The dynamics in terms of the new variables is fully covariant
under the 4-D diffeomorphism-induced group.
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Einstein-Hamilton-Jacobi and Wheeler-DeWitt

For each choice of new phase variables there exists a
corresponding Einstein-Hamilton-Jacobi equation

H0

[
gA,X

µ,
δS

δgB
,
δS

δX ν

]
= 0.

S does not yield classical solutions of Einstein’s equations as
functions of intrinsic coordinates

The corresponding Wheeler-DeWitt equation

H0

[
gA,X

µ,−i~
δ

δgB
,−i~

δ

δX ν

]
Ψ[gA,X

µ] = 0,

does implement the intrinsic coordinate choice at the
semi-classical level.
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Intrinsic Schrödinger equation

But the intrinsic Schrödinger equation

Hintrinsic

[
gA,−i~

δ

δgB
; xµ
]

Ψ [gA, x
ν ] = i~

∂

∂t
Ψ [gA, x

ν ] ,

is technically and conceptually simpler.
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The multiplicity in intrinsic coordinate challenge

We have a classical canonical transformation scheme for
obtaining the infinitude of possible intrinsic Hamiltonians.

Each yields a unique classical evolution.

The quantum mechanical challenge is to construct a theory in
which all of these in general unitarily inequivalent
diffeomorphism invariant evolutions are taken into account. A
full description of reality appears to require the collective use
of all possible intrinsic times.
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