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Francesca Vidotto! from discrete time

DISCRETE TIME

•

•

•

0 0 time keeps track of  elementary discrete changes

(cfr Heisenberg’s S-matrix - Blum’s talk)
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DISCRETE TIME

••

•

•

•

•

•
Time is  just one of  the degrees of  
freedom of  the system I am describing.  

Example: cosmology with anisotropies 
(Bianchi I)  →  I describe one d.o.f. 
w.r.t. the others!

time keeps track of  elementary discrete changes
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ONTHOLOGY

SPECIAL RELATIVITY:             Space + Time  =  Spacetime 

QUANTUM FIELD THEORY:    Fields have quantum properties 

DISCRETENESS:                   Measurements may give discrete spectral values  

GENERAL RELATIVITY:             Spacetime is a field                    ⟹  

SUBSTANTIVALISM:           Spacetime exists even if  there is no Matter 

QUANTUM GRAVITY:               Fields have quantum properties ⟹                 

RELATIONALITY:                 Observables are relational  (QM, GR, gauge theories…)

general-covariant  
quantum fields

general-covariant  
fields



Loop Quantum Gravity:      
                 
 
 

!

 

          “Holonomy of  the Ashtekar-Barbero connection along the link” 

                                                SU(2) generators  
            gravitational field operator (tetrad)              

Achtung:  the length operator is not naturally defined, same for a time operator
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QUANTUM GEOMETRY

4D

3D
2D

1D

Extrinsic Curvature 

Intrinsic Curvature

minimal eigenvalues, no minimal “bricks”  (Lorentz invariance)  
the operators do not commute 
quantum superposition

⌅Ll = {Li
l}, i = 1, 2, 3

hl
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OBSERVABLES

   Gauge invariant operator                                 with 

          Penrose’s spin-geometry theorem (1971), and Minkowski theorem (1897) 

     Area:                                     
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  Abstract graphs:  Γ={N,L}           

  Group variables:                                                                      

  Graph Hilbert space:  

  The space         admits a basis   

~Ll 2 su(2)

hl 2 SU(2){
H� = L2[SU(2)L/SU(2)N ]

H� |�, j`, vni
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HILBERT SPACE

ls(l)

t(l)
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•
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• •

•
•

•

vn
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 U(1) x IR

h  

Symplectic 2-form: 

Poisson brakets:       {h,β}=ih  
 
 
QUANTIZATION 

The discreteness of " is a direct consequence of the 
fact that α is in a compact domain.!

Notice that [α, "] ≠ ih because the derivative of the 
function α on the circle diverges at α = 0.

! = d↵ ^ d�

discrete spectrum

h = ei↵ 2 C, � 2 R

Quantization must take into account the global topology of phase space.!

    The correct elementary operator of this system is not α, but rather h = eiα

-



h|ni = |n+ 1i  cyclic:   h|Ni = |1i
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U(1)xU(1)

h  

Symplectic 2-form: 

Poisson brakets:  
 
 

QUANTIZATION 

Hilbert space:  

Operators:                                                         
 
 

Commutator:

h = ei↵, k = ei� 2 C

in the limit in which 
the radius of  one of  the two circles can 

be considered large we want to recover the 
symplectic form of  the cotangent space 

! = d↵ ^ d�
! = �h�1dh ^ k�1dk

{k, h} = hk

k|ni = ei
2⇡
N n|ni

[h, k] =
⇣
ei

2⇡
N � 1

⌘
hk

[â, b̂] = i~\{a, b} ~ =
2⇡

N

|ni n = 1, ..., N = dimH



h|ni = |n+ 1i  cyclic:   h|Ni = |1i
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U(1)xU(1)

h  

Symplectic 2-form: 

Poisson brakets:  
 
 

QUANTIZATION 

Hilbert space:  

Operators:                                                         
 
 

Commutator:

h = ei↵, k = ei� 2 C

in the limit in which 
the radius of  one of  the two circles can 

be considered large we want to recover the 
symplectic form of  the cotangent space 

! = d↵ ^ d�
! = �h�1dh ^ k�1dk

{k, h} = hk

k|ni = ei
2⇡
N n|ni

[h, k] =
⇣
ei

2⇡
N � 1

⌘
hk

[â, b̂] = i~\{a, b} ~ =
2⇡

N

|ni n = 1, ..., N = dimH

[Planck length] 
[cosmological constant]

discrete spectrum
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IDEA

Classical kinematics:  

Idea: replace the algebra with the group —> finiteness  (Haggard-Han-Kaminski-Riello ‘14) 

Classically: compact phase space —> finite Liouville volume 

Quantum: finite # of  Planck cells, finite # orthogonal states —> finite dim Hilbert space 

New LQG kinematics  (Borissov-Major-Smolin ’96, Dupuis-Girelli '13) 

Replacing flat cells with uniformly curved cells  (Bahr-Dittrich ’09) 

Result: cosmological constant ( as the one our universe has ! )

� ⌘ su(2)⇥ SU(2) 8`
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CONSTANT CURVATURE GEOMETRY

kl : rotation associated to the curved arc l 
hl : holonomy of  the 3d connection 
!
!
!
!

local isometry group, or  
Chern-Simon gauge group 

!
!
small triangles: 
!
!
Standard LQG phase space:

R = 1

↵` = L`/R

k` = e
~J`·~⌧ ⇠ 11 + J` = 1 + ~J` · ~⌧

SU(2)⇥ SU(2) !
R!1

su(2)⇥ SU(2) = T ⇤SU(2)

(k, h) 7!
R!1

(J, h)

SU(2)⇥ SU(2)

(Meusburger-Schroers ’08)

k`, h` 2 SO(3) ⇠ SU(2)

Figure 5. A close-up of the region close to the fifth vertex of the thickened �5 graph. The paths along which the
transverse holonomies Hab are calculated are represented with thick solid lines. All of them follow a right-handed
outward-pointing path around the edges of the graph. We have also depicted a virtual sphere around the vertex of the
graph in both panels. The sphere is pierced by the graph edges, these punctures are represented by ⇥’s. The right panel
shows the intersections of the faces of the graph with the sphere around the vertex (dashed lines), as deduced from our
choice of framing for �5. The line connecting punctures (52) and (54) traverses the hidden back side of the sphere. The
intersection pattern of these lines with the paths defining the transverse holonomies allows the reconstruction of the full
path structure on the tetrahedron, shown in the next figure.

Figure 6. The “simple” path on tetrahedron 5, dual to vertex 5 (see the previous figure). The images display the path
around faces 1 to 4, as reconstructed from the framing of �5. Notice, that the path around the fourth face is necessarily
di↵erent from the preceding ones.

The final missing ingredients are the duals to the tetrahedron’s sides; since they are non-intersecting
surfaces joining at the graph vertex, and in its neighborhood bounded by couples of graph edges, their
intersections with the sphere are given by non-intersecting lines connecting couples of punctures (dashed
lines in the right panel of the figure). We have just seen that these lines are also uniquely determined by the
choice of graph framing.

Now, the lines connecting the punctures on the sphere form a tetrahedron dual to the one we want to as-
sociate to the vertex: its vertices, the punctures, should correspond to the tetrahedron’s faces, and conversely,
its faces correspond to the tetrahedron’s vertices, and finally the sides correspond to the tetrahedron’s sides
themeselves (though in an “orthogonal” sense41). Therefore, we see that each path going around a puncture
corresponds to a path on the tetrahedron which starts at one vertex (the same for all of them) and visits some
other vertices, in a precise order, before coming back to the original one. A moment of reflection shows that
this set of paths corresponds to what we have called a “simple path” on the 1-skeleton of the tetrahedron in
[140]; for clarity and completeness, a simple path is illustrated in Figure 6, which should be self-explanatory.

Observe that in the simple path of Figure 6 a special role is played by the “special side” 24 of the
tetrahedron 5, and that this statement is independent of the position of the base point: had we moved it

41For example, at tetrahedron 5, the line joining punctures 1 and 3 is dual to the side in the 4-simplex shared by the triangular faces
(51) and (53), and therefore is dual to the 4-simplex side connecting the 4-simplex vertices 2̄ and 4̄.

– 33 –



L2[SU(2)] ⇠ �1
j=0(Hj ⌦Hj)

h (U) = U (U)

J i (U) = Li (U)

limit: arc ⪻ R  
where 

✓ = Tr[kh�1dh]
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SU(2)xSU(2)

h  

Symplectic 2-form: 

 
 
 

QUANTIZATION 

Hilbert space:  

Operators:                                                                                         

(k = eJ , h) 2 SU(2)⇥ SU(2)

! = Tr[dk ^ h�1dh� kh�1dh ^ h�1dh]

… but we are not going to use this!



L2[SU(2)] ⇠ �1
j=0(Hj ⌦Hj)

h (U) = U (U)

J i (U) = Li (U)

hU |jmni = Dj
mn(U)

hAB |jmni =
✓

1
2 j j0

A m m0

◆✓
1
2 j j0

B n n0

◆
|j0m0n0i

limit: arc ⪻ R  
where 

✓ = Tr[kh�1dh]

Francesca Vidotto! from discrete time

SU(2)xSU(2)

h  

Symplectic 2-form: 

 
 
 

QUANTIZATION 

Hilbert space:  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! = Tr[dk ^ h�1dh� kh�1dh ^ h�1dh]

… but we are not going to use this!

J i |jmni = ⌧ i (j)mk |jkni
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SU(2)xSU(2)

h  

Symplectic 2-form: 

 
 
 

QUANTIZATION 

Hilbert space:  

Operators:                                                                                         

(k = eJ , h) 2 SU(2)⇥ SU(2)

! = Tr[dk ^ h�1dh� kh�1dh ^ h�1dh]

q q

j
max

=
r � 2

2

j
max

QUANTUM GROUPS

qr = �1

… but we are not going to use this!

q
(    )

H =

J i |jmni = ⌧ i (j)mk |jkni
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KNOTS

                                                                                           does not commute any more 
 

Wigner symbols as trivalent nodes  
 
 
 
 

Acting with two operators:  
 
 
 
 

Inverse order:

hAB |jmni =
✓

1
2 j j0

A m m0

◆✓
1
2 j j0

B n n0

◆
|j0m0n0i

q q

hABhCD =

hCDhAB =

(hAB)
mn
m0n0 =

6 9 h reps

hABhCD = RA0C0

AC RB0D0

BD hC0D0hA0B0

{hAB , hCD} = rB
0D0

BD hCD0hAB0 + rA
0C0

AC hC0DhA0B

R ⇠ 1 + rExpanding in h so that                   :_

crossing operators

quasi Poisson-Lie groups
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PHYSICS 

We have introduced a modification of LQG kinematics  
� compact phase space 
� allows to introduce a (positive) cosmological constant 
!
finite dimensional Hilbert space  dim determined by the ratio between the two constants:  
� quantization (physically: Planck constant scale) 
� simplex curvature / deformation of  Poisson algebra (physically:  cosmological constant) 
!
Hilbert space reduces to usual LQG one for triangles small compared to curvature radius  

A q-deformation of  the dynamics:  
� renders quantum gravity finite (Turaev-Viro ’92, Han ’10) 
� amount to introduce the cosmological constant (Mizoguchi-Tada ’91, Han ’10) 

Compactness: discretization of  the intrinsic and extrinsic geometry  

Time discreteness:                          where 
minimum proper time Planckian, full discrete spectrum depends on cosmological constant

Kab ⇠ dqab/dt qab(�t) ⇠ qab(0) + dqab/dt �t

q = ei
p
⇤~G
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SUMMARY

Treat space and time on equal foot 

Implement discreteness for all observables 

Treat the variables homogenelly:  everything is holonomized  

New: extrinsic geometry turns out to be discrete 

New: time should be discrete too 

This seems to correctly capture the universe as we observe it!


