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Mathematics as a science of structures:

If in the consideration of a simply infinite system N set in order by
a transformation ϕ we entirely neglect the special character of the
elements, simply retaining their distinguishability and taking into
account only the relations to one another in which they are placed by
the order-setting transformation, then are these elements called
natural numbers. . . (Dedekind 1888)

Dedekind on arithmetic and analysis

Hilbert on geometry

Zermelo on set theory

 (Quasi-)Categoricity, if second-order

Algebra

Logic

Bourbaki

Category theory

Homotopy type theory (univalence)


General structures (incl. “algebraic”)
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Structuralism in the philosophy of mathematics answers ontological, semantic,
and epistemological questions about mathematics in a structuralist manner.

[I]n giving the properties. . . of numbers you merely characterize
an abstract structure. . . [T]he “elements” of the structure have no
properties other than those relating them to other “elements” of the
same structure. . . To be the number 3 is no more and no less than to
be preceded by 2, 1, and possibly 0, to be followed by 4, 5, and so
forth. . . (Benacerraf 1965)

Hannes Leitgeb (LMU Munich) A Theory of Unlabeled Graphs as Ante Rem Structures October 2016 3 / 36



Goal:

Make one version of structuralism—ante rem structuralism—more precise
in terms of an example theory and argue that it is coherent.

Plan:

1 Variants of Mathematical Structuralism
(not complete: e.g., Awodey 1996)

2 A Theory of Unlabeled Graphs as Ante Rem Structures

3 Philosophical Assessment of the Theory

4 Conclusions

We will concentrate on ontological and semantic questions about structures:
what are structures, and how can we speak about them?
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Variants of Mathematical Structuralism (Reck & Price 2000)

Eliminativist : structure talk concerns instantiating representations/systems.

Relativist:

0 = ∅
1 = {∅}
2 = {∅,{∅}}
...

N= ω

succ(n) = n∪{n}

E.g., ‘succ(0) , 0’: ∅∪{∅} , ∅

〈N,0,succ〉 satisfies Dedekind-Peano’s categorical PA2(N,0,s).
The choice of set-theoretic representation is arbitrary up to isomorphism.

What an arithmetical statement says is relative to representation.
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Universalist:

E.g., ‘succ(0) , 0’:

∀X ,y , f (PA2(X ,y , f )→ f (y) , y) [∧ ∃X ,y , f PA2(X ,y , f ) ].

An arithmetical statement is really a quantified statement about
all set-theoretic representations that satisfy the Dedekind-Peano axioms.

(There are also nominalist & modal versions: see Hellman 1989.)

Relativist Universalist

Ontological too much structure (e.g., 0 ∈ 1) X

Semantic X N,0,s not at face value
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Non-eliminativist and ante rem: structures are “independent” of instantiations.

Structures are abstract forms that their instantiations have in common.

But structures also consist of individuals, relations, and functions.
However, these components “have no identity or distinguishing features outside
a structure” (Resnik 1997; see also Shapiro 1997, Parsons 1990).

E.g., there is the unique ante rem structure of natural numbers:!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

...!

‘succ(0) , 0’: succ(0) , 0

Ante rem

Ontological X (right “amount” of structure)
Semantic X (N,0,s taken at face value)
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But what makes the arithmetical structure a structure? What are structures?

How can ‘0’ refer to 0, ‘succ’ refer to succ, etc.?

Is such a conception of ante rem structures even coherent?

It is impossible that the [numbers] should be, as Dedekind
suggests, nothing but the terms of such relations as constitute a
progression. If they are to be anything at all, they must be intrinsically
something (Russell 1903)

(And there are also various contemporary philosophers who question the
coherence of ante rem structuralism.)
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A Theory of Unlabeled Graphs as Ante Rem Structures

Unlabeled graph: a graph in which individual nodes have no
distinct identifications except through their interconnectivity.

(Wolfram MathWorld)

two graphs G = (N,E) and H = (N,F) are the same unlabeled
graph when they are isomorphic. . . (Mahadev & Peled 1995,
Threshold Graphs and Related Topics)

Sometimes we are interested only in the “structure” or “form” of a
graph and not in the names (labels) of the vertices and edges. In this
case we are interested in what is called an unlabeled graph. A
picture of an unlabeled graph can be obtained from a picture of a
graph by erasing all of the names on the vertices and edges. This
concept is simple enough, but is difficult to use mathematically
because the idea of a picture is not very precise. (Bender &
Williamson 2010, Lists, Decisions and Graphs)
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VARIETIES OF GRAPHS 
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Fig. 2.1,  The graphs with four points. 

Rather than continue with an intuitive development of additional 
concepts, we proceed with the tedious but essential sequence of definition 
upon definition. A graph G consists of a finite nonempty set V of p points* 
together with a prescribed set X of q unordered pairs of distinct points of 
V. Each pair x = {u,v} of points in X is a line* of C, and x is said to join u 
and v. We write x - uv and say that u and v are adjacent points (sometimes 
denoted u adj v); point u and line x are incident with each other, as are v 
and x. If two distinct lines x and y are incident with a common point, then 
they are adjacent lines. A graph with p points and q lines is called a (p, q) 
graph. The (1, 0) graph is trivial. 

G. 

Fig. 2.2.   A graph to illustrate adjacency. 

It is customary to represent a graph by means of a diagram and to refer 
to it as the graph. Thus, in the graph G of Fig. 2.2, the points u and t' are 
adjacent but u and w are not; lines x and y are adjacent but x and : are not. 
Although the lines x and z intersect in the diagram, their intersection is not 
a poinl of the graph. 

* The following is a lisi of synonyms which have been used in the literature, noi always with the 
indicated pairs: 

point,   vertex,   node,   junction,   0-siniplex.   element, 
line.      edge.      arc.      branch,     l-sirnplex,   element. 

(Harary 1969, Graph Theory)
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VARIETIES OF GRAPHS 11 

tmas 

C,: 

Fig. 2.5.  Labeled and unlabeled graphs. 

morphic with each of them. It goes without saying that isomorphism is an 
equivalence relation on graphs. 

An invariant of a graph G is a number associated with G which has the 
same value for any graph isomorphic to G. Thus the numbers p and q are 
certainly invariants. A complete set of invariants determines a graph up to 
isomorphism. For example, the numbers p and q constitute such a set for 
all graphs with less than four points. No decent complete set of invariants 
for a graph is known. 

A subgraph of G is a graph having all of its points and lines in G. If G, 
is a subgraph of G, then G is a supergraph of Gv A spanning subgraph is a 
subgraph cont. uing all the points of G. For any set S of points of G, the 
induced subgraph <S> is the maximal subgraph of G with point set S. Thus 
two points of S are adjacent in <S> if and only if they are adjacent in G. In 
Fig. 2.6, G2 is a spanning subgraph of G but G, is not; G, is an induced 
subgraph but G2 is not. 

G,: Ga: 

Fig. 2.6.  A graph and two subgraphs. 

The removal of a point vt from a graph G results in that subgraph G - v f 
of G consisting of all points of G except vt and all lines not incident with 
r,. Thus G - vt is the maximal subgraph of G not containing vt. On the 
other hand, the removal of a line Xj from G yields the spanning subgraph 
G - Xj containing all lines of G except x}. Thus G - Xj is the maximal 
subgraph of G not containing Xj. The removal of a set of points or lines from 
G is defined by the removal of single elements in succession. On the other 
hand, if r, and Vj are not adjacent in G, the addition of line v(Vj results in the 

A graph G is labeled when the p points are distinguished from
another by names such as v1, v2,. . ., vp, For example, the two graphs
G1 and G2 of Fig. 2.5 are labeled but G3 is not.

Rather than continue with an intuitive development of additional
concepts, we proceed with the tedious but essential sequence of
definitions upon definition. (Harary 1969)
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We seem to have a clear intuition (Anschauung) of unlabeled graphs.

But that intuition is not preserved by the set-theoretic definition of ‘graph’:

A graph is a pair 〈V ,E〉, such that V , ∅, E ⊆ {{v ,w}|v ,w ∈ V ,v , w}.

E.g.:

〈{0,1,2},{{0,1},{1,2}}〉 ( = {{{0,1,2}},{{0,1,2},{{0,1},{1,2}}}}).
〈{π,e,0},{{π,e},{e,0}}〉 ( = {{{π,e,0}},{{π,e,0},{{π,e},{e,0}}}}).

A labeled graph is a triple 〈V ,E , l〉, such that 〈V ,E〉 is a graph and
l : V → N.
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In the following, we are going to state an axiomatic theory UGT of unlabeled
graphs (undirected, without loops or multiple edges) as structures sui generis.

Language:

language of second-order logic with identity.

Primitive predicates: ‘Graph(G)’, ‘Vertex(v ,G)’, ‘Connected(v ,w ,G)’.

‘G’, ‘v ’: first-order variables (sometimes we use ‘G’ restricted to graphs).

‘X ’, ‘R’, ‘f ’: second-order variables.

Intended first-order universe D:

unlabeled graphs and their vertices.

Intended second-order universe:

sets, relations, functions on D.

Hannes Leitgeb (LMU Munich) A Theory of Unlabeled Graphs as Ante Rem Structures October 2016 13 / 36



Logic: standard deductive system of second-order logic; in particular:

∃X∀x(X(x)↔ ϕ[x]) (X not free in ϕ).

E.g.: ∀G∃X∀x(X(x)↔ Vertex(x ,G)).

ϕ is functional → ∃f∀v ,w(f (v) = w ↔ ϕ[v ,w ]) (f not free in ϕ)

∀x ,y : x = y ↔ ∀X(X(x)↔ X(y)).

∀X ,Y : X = Y ↔ ∀x(X(x)↔ Y (x)).

E.g.: ∀G∃!X∀x(X(x) ↔ Vertex(x ,G)).

∀f ,g: f = g ↔ ∀x(f (x) = g(x)).

Choice Axiom:

∀Rn+1(∀x1, . . . ,xn∃yRn+1(x1, . . . ,xn,y)→
∃f n∀x1, . . . ,xnRn+1(x1, . . . ,xn, f (x1, . . . ,xn))).
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Various definitions, e.g.:

∀v ,∀G: Isolated(v ,G) ↔ Vertex(v ,G)∧¬∃w Connected(v ,w ,G).

∀G,∀X : V (G) = X ↔ ∀x(X(x)↔ Vertex(x ,G)).
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General axioms for unlabeled graphs:

∀G∀v ,w : Connected(v ,w ,G)→
(i) Vertex(v ,G)∧Vertex(w ,G),

(ii) v , w ,

(iii) Connected(w ,v ,G).

∀G∀v : Vertex(v ,G)→
¬∃G′(G′ , G∧Vertex(v ,G′)) ∧ ¬Graph(v).

Identity criterion: ∀G,G′: G = G′↔ G � G′.

With:
G � G′ ↔ ∃f (f : G→ G′∧ f bijectiveG,G′ ∧ f structure-preservingG,G′ ).
f : G→ G′ ↔ ∀v(Vertex(v ,G)→ Vertex(f (v),G′)).
f bijectiveG,G′ ↔ ∀w(Vertex(w ,G′)→∃!v(Vertex(v ,G)∧ f (v) = w)).
f structure-preservingG,G′ ↔ ∀v ,w(Vertex(v ,G)∧Vertex(w ,G)→
(Connected(v ,w ,G)↔ Connected(f (v), f (w),G′))).
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Existence axioms for unlabeled graphs:

∃G∃!vVertex(v ,G).

The existence of the trivial graph (Harary, p.9).

∀G∃G′∃v ′, such that:
Vertex(v ′,G′),
Isolated(v ′,G′),
∃f Isomorphism(f ,G,G′− v ′).

G′− v ′: removal of a point (Harary, p.11).

∀G∀v ,w (Vertex(v ,G)∧Vertex(w ,G)∧ v , w ∧¬Connected(v ,w ,G)→
∃G′∃v ′∃w ′, such that:
Connected(v ′,w ′,G′),
∃f (Isomorphism(f ,G,G′−{v ′,w ′})∧ v ′ = f (v)∧w ′ = f (w)).

G′−{v ′,w ′}: removal of a line (Harary, p.11).
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On this basis we can prove all finite unlabeled graphs to exist, and we can
determine the cardinality of unlabeled graphs with a fixed number of vertices.

Theorem
E.g., using UGT, we can derive:

∃!G0∃!v Vertex(v ,G0).

∃G1∃v1,v2(v1 , v2∧Vertex(v1,G1)∧Vertex(v2,G1)∧
¬Connected(v1,v2,G1)∧∀w(Vertex(w ,G1)→ w = v1∨w = v2)).

There exist precisely four unlabeled graphs with three vertices.

Proof: Combination of existence axioms and identity criterion.

(All of these finite unlabeled graphs can be described categorically, of course.)

Accordingly, one can determine the right number of automorphisms for a given
unlabeled graph; and so on.
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E.g.: ∃G1∃v1,v2(v1 , v2∧Vertex(v1,G1)∧Vertex(v2,G1)∧
¬Connected(v1,v2,G1)∧∀w(Vertex(w ,G1)→ w = v1∨w = v2)).

Proof (sketch of main steps):

Ax. ∃G∃!vVertex(v ,G).

EI Vertex(v0,G0)∧∀w(Vertex(w ,G0)→ w = v0).

Ax. ∀G∃G′∃v ′, such that:
Vertex(v ′,G′) ∧
∃f (∀v(Vertex(v ,G)→ Vertex(f (v),G′)∧ f (v) , v ′)∧
∀w ′(Vertex(w ′,G′)∧w ′ , v ′→∃!w(Vertex(w ,G)∧ f (w) = w ′))∧
∀v ,w(Vertex(v ,G)∧Vertex(w ,G)→ (Connected(v ,w ,G)↔
Connected(e′, f (v), f (w),G′)))) ∧
Isolated(v ′,G′).

UI/EI Vertex(v1,G1)∧Vertex(f (v0),G1)∧ f (v0) , v1∧
∀w ′(Vertex(w ′,G1)∧w ′ , v1→ f (v0) = w ′)∧
Isolated(v1,G1).

EG Done.
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!
!
!
!
!
!
!
!
!
!
!
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Metatheorem
UGT is consistent.

Proof: Provide set-theoretic model.

First-order domain D: For each isomorphism type of finite set-theoretic
graphs with vertices in N, pick one member; but do so in a way such that
no two picked set-theoretic graphs share a vertex.

Put these set-theoretic graphs into D as well as their vertices.

Second-order domain: all sets, relations, functions on D.

Interpret ‘Graph(G)’, ‘Vertex(v ,G)’, ‘Connected(v ,w ,G)’ as expected.
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Extensions of the system:

Introduce natural numbers and functions from vertices to natural numbers:
state the second-order Dedekind-Peano axioms; include the natural
numbers in the intended universe.

Based on this, we can define, e.g.:

f is a walk in G iff ∃x(Nat(x)∧∀y(Nat(y)∧ y ≤ x → Vertex(f (y),G))∧
∀y(¬Nat(y)∨ y > x → y = G0)∧
∀y(Nat(y)∧ y < x → Connected(f (y), f (y +1),G))).

Define: connectedness, length of walk, distance, degree, etc.

One can define recursive functions on graphs explicitly, prove theorems by
induction (e.g. over the number of vertices of graphs), and derive in this
way theorems about all finite unlabeled graphs.
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Relations between graphs:

G′ is a subgraph of G if and only if
∃X∃f (∀v(X(v)→ Vertex(v ,G)) ∧ Isomorphism(f ,G|X ,G′)).

Further graph-theoretic operations:

Subgraph axiom:

∀G∀X (∀v(X(v)→ Vertex(v ,G))→∃G′∃f Isomorphism(f ,G|X ,G′)).

Isomorphism(f ,G|X ,G′):
∀x(X(x)→ Vertex(f (x),G′))∧
∀x ′(Vertex(x ′,G′)→∃!x(X(x)∧ f (x) = x ′))∧
∀x ,y(X(x)∧X(y)→ (Connected(x ,y ,G)↔

Connected(f (x), f (y),G′))).

Union graph axiom (not literal union!)

Product graph axiom (use category-theoretic formulation!)
...
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!
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!
!
!
!
!
!
!

...!
v0! v1!

Infinity graph axiom:

∃G∃v0,v1: Vertex(v0,G)∧Vertex(v1,G)∧Connected(v0,v1,G)∧
∀w(Connected(w ,v0,G)→ w = v1)∧
∃f (Isomorphism(f ,G,G− v0)∧ f (v0) = v1).

(→ There exists a special graph which is identical to one of its subgraphs.)

Use subgraph axiom to determine the (structurally) least graph of that kind.
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Philosophical Assessment of the Theory

This theory of unlabeled graphs should count as an axiomatic treatment of
(a special family of) ante rem structures:

If in the consideration of a simply infinite system N set in order by
a transformation ϕ we entirely neglect the special character of the
elements, simply retaining their distinguishability and taking into
account only the relations to one another in which they are placed by
the order-setting transformation, then are these elements called
natural numbers. . . (Dedekind 1888)

Now we discuss some of the standard worries about ante rem structuralism
against the background of our theory.
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Ontological and semantic worries:

Resnik (1997) takes identities across structures to be indeterminate, while
Shapiro (2006) takes them to be false (as do Linsky & Zalta 2006).

But this may run counter to mathematical practice: cf. MacBride (2005).

– Not much of an issue for unlabeled graphs:

Graph theorists do not identify vertices from distinct unlabeled graphs. X

– Even if they did in some cases, this would not be a problem:

Drop: ∀G∀v(Vertex(v ,G)→¬∃G′(G′ , G∧Vertex(v ,G′))).

Deductively, it was not used anyway.

Since connectedness is graph-relative (‘Connected(v ,w ,G)’),
and since all constructions had been carried out “along isomorphisms”,
allowing for “crossroad vertices” would be consistent.!

!
!
!

!
!
!
!
!
!
!
!
!
!
!

a! a!
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If two objects a, b in a structure are structurally indistinguishable—that is,
there is an automorphism f so that f (a) = b—shouldn’t they be identical?

Which would be against mathematical practice again (e.g., i vs −i).
cf. Burgess (1999), Keränen (2001).

↪→ No! (cf. Ketland 2006, Leitgeb & Ladyman 2008, Shapiro 1997, 2008.)

!
!
!
!
!
!
!
!
!
!
!
Let a,b so that Vertex(a,G1),Vertex(b,G1), and a , b:

the fact that a , b obtains in virtue of

∃v1,v2(v1 , v2∧Vertex(v1,G1)∧Vertex(v2,G1)∧
¬Connected(v1,v2,G1)∧∀w(Vertex(w ,G1)→ w = v1∨w = v2)).

That a , b holds is grounded in what the unlabeled graph G1 is like. X
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!
!
!
!
!
!
!
!
!
!
!Accordingly, our logical identity principles are perfectly consistent with our ante

rem structuralism about unlabeled graphs:

– ∀x ,y : x = y ↔ ∀X(X(x)↔ X(y)).

Don’t restrict PII to “qualitative” properties, don’t think of it predicatively.

Even Shapiro (2008) gets it wrong on identity properties: identity is perfectly
structural, just as number of vertices in graph G is!

– ∀X ,Y : X = Y ↔ ∀x(X(x)↔ Y (x)).

Don’t misunderstand this to be about identity of subgraphs!
Within a G, ‘X ’ and ‘Y ’ range over sets of vertices or, plurally, over vertices.

– ∀f ,g: f = g ↔ ∀x(f (x) = g(x))

Which yields, e.g., the right number of automorphisms for graphs. X
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!

“Objects” (“places”) in ante rem structures are not really objects.

cf. Benacerraf (1965).

↪→ Vertices in unlabeled graphs are not substances/individuals in a
traditional metaphysical sense (cf. Caulton and Butterfield 2012),
but they are objects in a logical or Quinean sense:

– they are (members of) values of bound variables (∃v , ∀v , ∃X , ∀X ),

– one can map them to other objects,

– there is an identity/difference relation for them,

– one can count them. X
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In order to clarify non-eliminative structuralism, we need a notion of
“important” property that is preserved when we abstract out structures
from instantiating systems.

Compare Øystein’s talk from yesterday.

↪→We did not need any such notion since we did not introduce unlabeled
graphs via abstraction. Unlabeled graphs are primitives. X
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There are no precise axioms for ante rem structures, or such axioms are
just “set theory in disguise” (such as the axioms in Shapiro 1997).

cf. Nodelman & Zalta (2014), Hellman (2005).

↪→ Done. X

The axiomatic system UGT for unlabeled graphs is

(i) in line with pre-set-theoretic mathematical practice,
(ii) exact,
(iii) based on a structuralist identity criterion,
(iv) consistent,
(v) can easily be strengthened.

(What more do you want me to do?)
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Is it possible to refer to all of the individuals in non-rigid structures
(where there exists an automorphism f , such that f (a) = b and a , b)?

cf. Shapiro (2008), Räz (2013).

↪→ Yes! X (cf. Brandom 1996)
!
!
!
!

!
!

!
!
!
!
!
!
!
!
!
!
!
!
!
!

!a! !b!

Informally: Let ‘a’ denote any node in G1; let ‘b’ denote the other node.

Formally: a = εvVertex(v ,G1); b = εv(Vertex(v ,G1)∧ v , a).

cf. Hilbert, Bourbaki, Shapiro (2008) on epsilon terms.
Or think of epsilon terms as used only in the act of baptism (Kripke!).

Given the ε-term definitions of ‘a’ and ‘b’, our previous ‘the fact that a , b
obtains in virtue of. . .’ can be made precise in terms of ‘is derivable from’.
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!
!

!
!

!
!
!
!
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!
!
!
!
!
!
!
!
!

!a! !b!

Even Shapiro (2008) gets this wrong when he says “There simply is no naming
any point. . . in some graphs. . .”:

There are simply two distinct but structurally indistinguishable reference
relations on G1 above, just as it had been the case for a and b themselves.

(Or maybe this is not “real” reference? Well,. . .)
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Conclusions

Unlabeled graphs can be treated, mathematically and philosophically, as
structures sui generis.

(Interestingly, when one does so, the boundaries between doing mathe-
matics structurally and structuralism about mathematics become fuzzy.)

At least as far as unlabeled graphs are concerned, ante rem structuralism
amounts to a coherent position in the philosophy of mathematics.

None of this is against set theory per se: just against taking the
set-theoretic reconstruction of the basic structures too seriously.
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Unlabeled Graph Theory vs Set Theory

How does UGT relate to set theory?

Set theory has three roles to play in modern mathematics:

1 Set theory as a mathematical “language”:

e.g., second-order quantifiers ∀X , ∃X ,∀f ,∃f in UGT. X

2 Set theory as a special area of mathematics:

the mathematical study of the cumulative hierarchy and related structures
(mostly independent of UGT). X

3 Set theory as a foundation of mathematics:

Interpreted axiomatic set theory plus methods of reducing mathematical
objects, concepts, theorems to set-theoretic objects, concepts, theorems.

How this squares with UGT depends on the purpose of reduction.
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Set theory as a foundation of mathematics:

3a For mathematical purposes: show that reduction is possible and how so.

Relative interpretability yields (i) relative consistency, (ii) a way of using
methods and results from one field in another, and more.

E.g., proof of consistency of UGT (≈ relativist structuralism!). X

With a bit more work, the direction of reduction might also be reversed
(standard set theory as theory of pointed, grounded, directed graphs
under bisimilarity; cf. Aczel 1988).

3b For quasi-philosophical purposes: determine purely set-theoretically (what
should be) the intended interpretation of the language of mathematics.

This I find questionable! 6X
Relative interpretation preserves derivability but not necessarily meaning.

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

is simulated by {{{0,1,2}},{{0,1,2},{{0,1},{1,2}}}}
(or its isomorphism class)
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