ENTROPY AND INFORMATION IN COMPLEX SYSTEMS

Karoline Wiesner University of Bristol

GOAL OF THE TALK

- ► Notes on what is a complex system
- Information mathematically and conceptually
- Examples of information analysis of complex systems

Ladyman, Lambert, Wiesner What is a complex system Eur J Phil Sci (2013)

A complex system is an ensemble of many elements which are interacting in a disordered way, resulting in robust organisation and memory.

ENTROPY

INFORMATION

A measure that corresponds much better to what is usually meant by complexity in ordinary conversation, as well as in scientific discourse, refers [...] to the length of a concise description of a set of the entity's regularities.

> Murray Gell-Mann. What is complexity. Complexity, (1995)

COMPLEXITY IS NOT JUST REGULARITIES.

THREE QUESTIONS I WILL ANSWER

- A. Is complexity really between order and randomness?
- B. Why is information relevant for complex systems?
- C. What have scientists done to show this?

A. Is complexity really between order and randomness?

- B. Why is information relevant for complex systems?
- C. What have scientists done to show this?

MYTH OF THE complexity PEAKED COMPLEXITY FUNCTION

Shalizi, CR, KL Shalizi, and R Haslinger. "Quantifying Self-Organization with Optimal Predictors." Phys Rev Lett (2004)

University of BRISTOL

THERE IS NO FUNCTION REPRODUCING THE PEAK (YET)

DISORDER VS ORDER

Ladyman and Wiesner Princeton University Press to be published 2017

► System vs product

2ND PART

A. Notes on what is a complex system

B. Information mathematically and conceptually

C. Examples of information analysis of complex systems

SHANNON ENTROPY MEASURES DISORDER

► Shannon entropy

 $H(X) = -\sum p(x)\log p(x)$ ${x}$

SHANNON VS GIBBS

$$H(X) = -\sum_{x} p(x) \log p(x)$$

$$S = -k_B \sum_i p_i \ln p_i$$

MUTUAL INFORMATION

$$I(X;Y) = \sum_{x,y} p(xy) \log \frac{p(xy)}{p(x)p(y)}$$

I(X;Y) = H(X) + H(Y) - H(X,Y)

- Is complexity really between order and randomness?
- ➤ Why is information relevant for complex systems?
- ➤ What have scientists done to show this?

MUTUAL INFORMATION MEASURES CORRELATIONS

Interaction as correlation as information

66315	17.4811718937218	0	0	0	16.6771211642723	0	15.7413724705
153859	16.3236161021867	0	0	0	18.6387276852569	0	17.55048661177
09474	16.3790678766315	0	0	0	18.3198799821994	16.9959688673299	16.4622455382
74714	0	0	0	0	17.7653622377514	0	
10826	0	0	0	0	17.599006914417	16.5315602563547	16.9335856210
66441	16.9474485646907	0	0	0	17.1900500778866	0	
45491	0	0	0	15.401730352042	15.9285222092675	0	14.80562377676
35739	17.252433324137	0	0	0	18.9090550856753	0	17.4049257038
05227	0	0	0	0	17.9594434483082	0	12.01224063910
65109	0	0	0	0	16.5523546717715	0	17.13459830344
20546	16.4137252356595	0	0	0	18.3891947002554	0	11.54783202812
55243	16.3929308202427	0	0	0	16.3652049330203	0	17.0999409444
77451	0	0	0	16.7533673541339	17.6405957452506	0	15.92852220926
37092	15.9909054555179	0	0	0	16.5870120307995	0	16.2820272713
94091	0	0	0	0	17.5088977809442	0	
44328	0	0	0	0	0	0	
51154	0	0	0	0	0	0	
74746	0	0	0	0	18.2367023205322	0	15.436387711
09347	15.5264968445428	0	0	16.1295348916299	16.5731490871883	0	13.8352177239
17715	18.0772784690034	0	0	17.8831972584466	19.1793824860937	0	16.4275881792
80314	0	0	0	17.460377478305	12.2063218496606	0	
05195	16.9959688673299	0	0	0	16.1156719480187	0	16.0671516453
27498	16.8504079594123	0	0	0	17.6267328016394	0	15.07595117717
83145	17.9247860892802	0	0	0	0	0	
54017	0	0	0	0	18.6248647416457	0	17.1761871342
84371	15 7067151114884	0	0	0	17 2662962677482	0	16 2404384405

Ladyman and Wiesner Princeton University Press to be published 2017

INFORMATION PROVIDES A UNIVERSAL LANGUAGE FOR ALL COMPLEX SYSTEMS.

Network theory as universal language for complex systems.

3RD PART

- ➤ Notes on what is a complex system
- Information mathematically and conceptually
- Examples of information analysis of complex systems

MODEL GLASS FORMERS

.

Dunleavy, Andrew J., K Wiesner, R Yamamoto, and CP Royall. 'Mutual Information Reveals Multiple Structural Relaxation Mechanisms in a Model Glass Former'. Nature Communications (2015).

MUTUAL INFORMATION: SIGNATURE OF COLLECTIVE MOTION

MUTUAL INFORMATION REVEALS COLLECTIVE MOTION

TWO TYPES OF PARTICLES

Number of correlated particles

MUTUAL INFORMATION PREDICTS MAJOR PLAYERS IN RELAXATION MECHANISM

Dunleavy, Andrew J., K Wiesner, R Yamamoto, and CP Royall. 'Mutual Information Reveals Multiple Structural Relaxation Mechanisms in a Model Glass Former'. Nature Communications (2015).

late movers

early movers

STEM CELL DIFFERENTIATION

ENTROPY HYPOTHESIS

NETWORK ENTROPY CORRELATES WITH PLURIPOTENCY

Banerji, Christopher et al. "Cellular Network Entropy as the Energy Potential in Waddington's Differentiation Landscape." Scientific Reports (2013)

CONCLUSIONS

- Information is useful because of abstraction of interactions
- Information can measure order and disorder
- Complex systems science is possible because of abstraction to similar mathematical constructs

- Is complexity is really between order and randomness, complexity measures are not.
- ► Information is a universal language for complex systems.
- Scientists are beginning to quantify this.

