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The Bayesian Approach to Robust Argumentation Machines 

 

1. Starting Point 
1.1 State of the art and preliminary work 
Argumentation is central to our complex world. It pervades law, politics, academia, and everyday 
life, so it is not surprising that it is the concern of a wide range of disciplines, spanning philosophy, 
psychology, education, logic and computer science. Philosophers have focussed on normative 
theories, that is, theories of how we should behave. The traditional standard, here, has been 
formal logic, but more recently, pragma-dialectical theories have focussed on the norms and 
conventions governing argumentative process (e.g., van Eemeren & Grootendorst, 1992, 2004; 
Walton, 1995, 1998). Within psychology, ‘persuasion’ has been a central topic of social 
psychological research (Petty & Cacioppo, 1986; Eagly & Chaiken, 1993). This has led to a vast 
literature that has identified many of the moderating variables (e.g., speaker likeability, 
engagement, mode of presentation, fit with prior beliefs) that affect the degree to which persuasive 
communication will be effective. Developmental and education research have focussed on the 
way children’s argumentation skills develop and examined ways in which critical thinking and 
argument skills might be fostered (e.g., Felton & Kuhn, 2001; Kuhn & Udell, 2003; von 
Aufschnaiter et al., 2008). Logicians and computer scientists have sought to devise 
argumentation frameworks for dealing with dialectical information, seeking to capture the 
structural relationships between theses, rebuttals, and supporting arguments with the degree of 
explicitness necessary for the design of computational argumentation system (Dung, 1995; 
Prakken & Vreeswijk, 2002; Rahwan & Moraites, 2009).  
A shared, focal concern for all of these areas is the issue of argument quality: what makes a good 
argument, and how can good arguments be distinguished from bad ones? This question has two 
aspects—one descriptive and one normative. On a descriptive level, this question is about 
success, that is, about what (descriptively) ‘works’ in convincing others of a position. At the same 
time, however, researchers in all of the above areas are necessarily engaged in the question of 
what should convince us, and which are the appropriate normative standards against which 
argument quality should be judged. For philosophers, this question is both part of the longstanding 
interest in human rationality and part of epistemological concerns about how we can come to 
secure knowledge of the world (Rescher, 1977; Eva & Hartmann, 2018; Godden & Zenker, 2018). 
In psychology, the question of argument quality arises for cognitive psychologists descriptively 
seeking to assess the quality of people’s argumentation (e.g., Kuhn, 1991; Corner, Hahn & 
Oaksford, 2011; Harris et al. 2016) as part of the long tradition of rationality-focussed research 
on reasoning, judgment and decision-making (Kahneman, 2011). It arises as a target for 
educational psychologists who want to improve argument skills (von Aufschnaiter et al., 2008), 
and it arises as a methodological need for social psychologists interested in factors and processes 
of persuasion that attach to aspects other than the intrinsic quality of the argument (Petty & 
Cacioppo, 1986), because they must experimentally manipulate or statistically factor out 
argument quality. For computer scientists, finally, argument quality matters, because artificial 
intelligence systems that seek to provide support in complex, high-level domains are ultimately 
aimed at providing high-quality advice (Jackson, 1998; Neapolitan, 2011), which implies the need 
to filter, weight and integrate information. So how can argument quality be measured? What 
normative standards might be devised?  
Fallacies of argumentation have historically had a central role in attempts to understand argument 
quality (Hamblin, 1970; Woods et al., 2004). The longstanding goal of fallacies research was to 
provide a comprehensive treatment of the catalogue of fallacies that explains exactly why they 
are ‘bad’ arguments, ideally giving a unifying formal account of why they are poor (Hamblin, 1970). 
In the last 15 years, the probability calculus (or, where decisions and utilities are involved, 
Bayesian decision theory) has been applied to the catalogue of fallacies: arguments from 
ignorance (Oaksford & Hahn, 2004; Hahn & Oaksford, 2007, 2008; Harris et al. 2013), circular 
arguments (Hahn & Oaksford, 2007; Hahn, 2011), slippery slope arguments (Corner, Hahn & 
Oaksford, 2011), ad hominem arguments (Oaksford & Hahn, 2013), appeals to expertise (Harris 
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et al. 2016), ad populum arguments (Hahn & Hornikx, 2016), and shorter sketches of how the 
account applies to the remainder of the catalogue of fallacies (Hahn & Oaksford, 2006). This work 
has shown how a probabilistic treatment can provide a detailed, normative account of argument 
strength for these fallacies, thus answering long-standing philosophical questions. Because 
instances of these fallacies occur regularly in everyday discourse (Tindale, 2007), and in some 
cases even occur frequently (e.g., ad hominem arguments), this formal treatment of the fallacies 
considerably extended the range of normative theories of argument quality. It is also worth noting 
that this new normative standard did not just address a long-standing theoretical, philosophical 
concern, it also opened up novel paths for empirical, behavioral experimentation. For each of 
these fallacies, formalization prompted new experimental programs examining lay people’s 
reasoning (e.g., Corner et al., 2011; Bhatia & Oaksford, 2015; Oaksford & Hahn, 2004; Corner & 
Hahn, 2009; Harris, Hsu & Madsen, 2012; Hornikx, Harris & Boekema, 2018). Such experiments 
examine the extent to which arguers intuitively respect normative standards. 
More recently, the application of the Bayesian framework to a broader set of schemes for every 
day argument from the informal logic literature has taken this a step further. The basic idea is 
easy: One considers an agent (= agent 1) who has (partial) beliefs about a set of propositions 
and represents these beliefs by a probability function P. Then another agent (= agent 2) wants to 
convince agent 1 of one of the propositions (= the conclusion). To do so, she proceeds indirectly 
and endorses some of the other propositions (= the premises) which, in turn, prompts agent 1 to 
change (typically increase) the probability of these premises. To make sure that the resulting new 
probability distribution Q is coherent, she updates all other propositions on this new information. 
In the simplest case, agent 1 considers the premises to be certain after agent 2 endorsed them. 
The new probability of the conclusion then follows by conditionalizing on these premises. This 
procedure (slogan: “argumentation is learning”) leads to plausible results and can be generalized 
in various directions, e.g. to cases where the new probability of the premises is not 1, an indicative 
conditional has exceptions, the sources are only partially reliable, etc. See e.g. Eva & Hartmann 
(2019), Eva, Hartmann & Singmann (2019), Stern & Hartmann (2018). 
The literature on informal argument has catalogued 60+ schemes (Walton et al., 2008; 
Wachsmuth et al. 2017). Like the fallacies, these schemes identify recurring structures that occur 
with varying content in everyday discourse; but unlike the fallacies, these particular schemes are 
taken to be ‘good’. Specifically, they provide reasonable, albeit defeasible, inferences for 
uncertain, ampliative reasoning (which sets them apart from logical schemes such as the classic 
set of syllogism or conditional reasoning schemes like modus ponens, modus tollens etc.). Hahn 
and Hornikx (2016) showed for several sample schemes how a probabilistic treatment may help 
achieve the long-held goals of the scheme-based tradition. Here, the Bayesian framework 
naturally imposes informational relevance through the likelihood ratio. This helps not just with the 
fallacies, given that fallacies are typically fallacies of relevance (Walton, 1995; 2004), it is essential 
to capturing argument quality in general. Elucidating in a formally satisfactory, non-question 
begging way, the notion of relevance itself has been a long-standing challenge (Wilson & Sperber, 
1986; Hahn & Oaksford, 2006), and the Bayesian framework helps meet this challenge. 
Crucially, the probabilistic treatment of everyday argument schemes provides a solid normative 
foundation for these schemes that moves beyond mere intuition. This follows from the normative 
foundation of the Bayesian framework. Here we not only find the traditional pragmatic arguments 
(a.k.a. Dutch book arguments; Pettigrew, 2020), but also epistemic arguments that show that 
agents who represent their (partial) beliefs with a probability function minimize the inaccuracy of 
their (partial) beliefs (Pettigrew, 2016; see also more generally, Corner & Hahn, 2013). Besides 
its normative justification, the Bayesian framework has the advantage that it connects well with 
experimental studies from the psychology of reasoning as probability judgments can be extracted 
from them. While this has been demonstrated for many different reasoning tasks (see, e.g. 
Oaksford & Chater, 2007), the normative, empirical and computational study of everyday 
argument schemes in the Bayesian framework is only at the beginning. However, the broad shape 
of the explanatory project is discernible. 
From a philosophical perspective, the Bayesian treatment of fallacies and informal argument 
schemes brought together formal epistemology and a hitherto separate community concerned 
with “informal logic”. As a result, Bayesian Argumentation is now also being expanded to other 
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features of argument (e.g., Zenker, 2014; Godden & Zenker, 2016). At the same time, work by 
the applicant and colleagues has extended the formal arsenal of Bayesian Argumentation in order 
to broaden the scope of possible inferences (Eva & Hartmann, 2018b) and has provided detailed 
treatments of scientific inference schemes (e.g., Dawid, Hartmann & Sprenger, 2015; Eva & 
Hartmann, 2018; Dardashti & Hartmann, 2019; Dardashti et al. 2019) in a program paralleling the 
treatment of everyday schemes. Specifically, the applicant and colleagues have shown how new 
forms of ‘evidence’ which are not amenable to Bayesian conditionalization (such as indicative 
conditionals and causal structure) may be captured by minimizing a probabilistic divergence 
measure from the class of f-divergencies (such as the Kullback-Leibler divergence) between the 
new probability distribution Q and the old probability distribution P, taking the learned evidence 
as a probabilistic constraint on Q into account (Eva & Hartmann, 2018; Eva, Hartmann & Rafiee 
Rad, 2020; Stern & Hartmann, 2018). 
The body of work on Bayesian Argumentation arguably represents the state of the art with respect 
to measuring argument quality, in that both a quantitative measure and a well-developed 
normative basis is provided (see also Nussbaum, 2011). Use of other tools described above 
frequently shows their limitations: assessment of argument quality within psychology either made 
do with purely qualitative, structural considerations such as the Toulmin model (Toulmin, 1958; 
for a critique see Hahn, Zenker & Blum, 2015), relied on pre-testing of intuitively varying materials 
(for a fundamental methodological critique of this latter strategy see, O’Keefe, 2006), or employed 
everyday informal schemes whose normative basis still remained somewhat unclear (see Hahn 
& Hornikx, 2016). Bayesian argumentation has moved argumentation research beyond these 
limitations.  
However, the majority of the work on Bayesian argumentation to date has focussed on single 
premise-claim relationships. Naturally occurring arguments typically span multiple claims, sub-
claims, supporting statements, and complex attack and defeat relations. It is here that qualitative 
approaches to argument (e.g., Dung et al., 1995; Gordon et al., 2008) in the computational 
literature have excelled (see e.g., Rahwan & Moraites, 2007). Here too, the need for argument 
weighting has motivated attempts to add probabilities to these frameworks (e.g., Li, Oren & 
Norman, 2011), but there are arguably more developed, better suited frameworks for such 
amalgamation. 
With Bayesian Belief Networks (BBNs), the Bayesian framework possesses a computational tool 
for capturing complex multi-variable relationships. BBNs have been developed in the 1980s as 
an efficient tool to represent joint probability distributions over a potentially large number of 
variables (Pearl, 1988; Neapolitan, 2012). This can be achieved by exploiting conditional 
probabilistic independencies which hold between the variables. These probabilistic 
independencies form the structure of the BBN which respects the Markov condition (“every 
variable is independent of its non-descendents, given its parents”); all other conditional 
independencies can be read-off from the BBN using the d-separation criterion. The computational 
machinery that comes with BBNs is very powerful, which led to successful practical applications 
in various contexts ranging from defense and military (Falzon, 2006; Laskey and Mahoney, 1997) 
and cyber security (Chockalingam et al., 2017; Xie et al., 2010), over medicine (Agrahari et al., 
2018; Wiegerinck et al., 2013), and law and forensics (Lagnado et al., 2013; Fenton et al., 2013), 
to agriculture (Drury et al., 2017). On the more theoretical side, BBNs proved to be indispensable 
tools in computer science (Russell & Norvig, 2020), cognitive science (Gopnik & Tenenbaum, 
2007) and parts of philosophy (Bovens & Hartmann, 2003; Sprenger & Hartmann, 2019). Finally, 
BBNs are closely related to causal graphs which play an important role in the literature on causal 
discovery (Pearl, 2009; Peters et al., 2017; Sprites et al., 2000). See also Eva, Stern & Hartmann 
(2019).  
Clearly, there are many contexts in which suitable numbers for parameterization of the prior 
probability distribution (see e.g., Sprenger & Hartmann, 2019, for a general discussion of the 
problem of priors in the Bayesian framework) may be difficult or impossible to come by, thus 
necessitating the need for alternative qualitative approaches. However, the fact that BBNs have 
been used successfully both in practical, AI decision-support systems and in the reconstruction 
of very large bodies of forensic evidence (Kadane & Schum, 2011), suggests that there should 
be real-world application domains where BBNs can be deployed successfully for argumentation.  
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Moreover, there is a strand of research originating in the late 1990’s that has examined automatic 
argument generation from BBNs (Zukerman et al., 1998; Zukerman et al., 1999). This line of 
research has recently converged with the considerable interest in explainable AI and the 
automatic generation of explanations within BBNs (Gunning and Aha, 2019; Tešić and Hahn, 
forthcoming)—a development that is made plausible by the close connections between argument 
and explanation both conceptually (Bovens and Hartmann, 2003; Dardashti et al., 2019; Dizadji-
Bahmani et al., 2011; Howson and Urbach, 2006; Tešić, 2019) and psychologically (Hahn and 
Oaksford, 2006; Hahn and Oaksford, 2007; Hahn and Hornikx, 2016; Rehder, 2014; Rottman and 
Hastie, 2014; Tešić and Hahn, 2019; Tešić et al., 2020).  
For BBNs to support robust argumentation machines in real-world practice, however, more is 
required than just suitable algorithms for argument generation and evaluation. Specifically, 
suitable BBNs must also be learnable from real world data. Here, decades of research on learning 
BBNs (Geiger and Heckerman, 1994; Heckerman et al., 1999; Chickering, 2002; Neapolitan, 
2003; Pearl, 2009; Peters et al., 2017; Spirtes et al., 2000) can be brought to bear. At the same 
time, empirical evaluation has been shown to be crucial in assessing AI systems when the output 
consists of outputs that are supposed to be understandable to a human user, as, e.g., in 
explanation providing recommender systems, Zhang & Chen, 2020). Given the close conceptual 
connections between explanation and argument, we think that such empirical exploration should 
take place in assessment of argumentation machines. 
In this proposal, we seek to bring together these currently disparate strands of research to provide 
a) automatic argument generation and evaluation across b) structured many-variable domains 
including multiple, interacting premises and conclusions, based on c) machine learning of BBN’s 
from large real world data sets, which we will put to d) rigorous evaluation by human users.  
 
2. Objectives and work program 
2.1 Objectives 
It is well-known that the Bayesian approach to argumentation (i) has a solid normative foundation 
and (ii) connects well with empirical data from experiments in the psychology of reasoning and 
argumentation. The main objective of this research proposal is to demonstrate that it also has the 
computational resources to allow for large-scale applications in the context of robust 
argumentation machines. We will adapt some of the available computational tools and methods 
to the study of argumentation and develop new tools and methods if needed. More specifically, 
our project has the following four objectives:   

1. To use machine learning tools to learn BBNs from large data sets. 
2. To develop adequate argument generation and evaluation algorithms from these BBNs. 
3. To set up tools for testing perceived argument quality of generated arguments. 
4. To use these tools to test the arguments we generated. 

 
2.2 Work program incl. proposed research methods 
We divide the proposed research into four interrelated work packages (WPs).  
 
WP1: Learning BBNs from data sets 
The methods for learning the structure of BBNs can be grouped in two categories (Peters et al., 
2017): (i) Independence-based methods relate the conditional independence in data with d-
separations in the graph. Algorithms such as the IC algorithm (Pearl, 2009), the SGS algorithm, 
and the PC algorithm (Spirtes et al., 2000) use conditional probability tests to answer queries 
regarding d-separations in the graph. They first build undirected graphs that underlie the network 
structure (so-called ‘skeletons’). Then the directionality is set by: (a) finding v-structures whereby 
two mutually disconnected variables (e.g. A and B) are connected to a third variable (e.g. C) and 
A and B are not conditionally independent given C; in these cases a directed arrow is drawn from 
A to C and from B to C; and (b) respecting the acyclicity constraint, i.e. that a BBN cannot contain 
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cycles.  
(ii) Score-based methods, on the other hand, score each (initially randomly generated) candidate 
BBN’s fit to data and then search for ways to modify these networks in order to maximize the 
score (Geiger and Heckerman, 1994, Heckerman et al., 1999, Chickering, 2002). Modifications 
are often done using a greedy algorithm (e.g. hill-climbing or tabu search) where a pair of 
variables is picked and one of three actions is performed and their score assessed: (a) add an 
arrow, (b) delete an existing arrow, or (c) change the direction of the arrow. The action with the 
highest score will be performed and another pair of the variables will be chosen until the score 
does no longer significantly improve. 
For learning BBNs from data, we will be using a freely available R package ‘bnlearn’ 
(https://www.bnlearn.com/). The package implements both independence-based and score-
based algorithms for learning BBNs along with a number of score functions and independence 
tests. We will use both the independence-based and score-based methods to learn BBNs from 
data. On the independence-based methods side we will use the si.hiton.pc function that 
implements the Semi-Interleaved HITON-PC algorithm. From the score-based methods we will 
use tabu function that implements the tabu greedy search algorithm and Bayesian information 
criterion as a scoring function. ‘bnlearn’ also allows expert knowledge input in terms of which 
arrows should be connected and in which direction. Where that knowledge is available we will 
use it as additional constraints to learning BBNs. 
We will use a publicly available data set on financial factors that drive stock returns for learning 
BBNs (http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html). This consists 
of factors constructed based on both the U.S. returns and international returns. The factors and 
returns will then be used as variables in learning BBN structures. The discussion on what factors 
drive stock returns is still ongoing in the finance literature (Fama and French, 1993; 2012; 2015), 
but some of the factors that have been identified as driving the stock returns are: value (a 
relationship between the stock price and book value of a company), size (market capitalization or 
total dollar value of all outstanding shares of a company), momentum (past performance of 
stocks), quality (capures metrics like debt, earnings growth, quality of management, corporate 
governance, etc.), volatility (fluctuations in stock prices relative to the market). How many and 
which factors one should include in explaining the stock returns is very much part of the current 
debate in finance (Blitz et al., 2018). In particular, it is not clear how these factors interact with 
each other. Learning BBNs on investment factors data is thus a promising starting point. New 
(big) data are, however, rapidly becoming available in various domains; while our initial cycle will 
focus on this economic data set, we will repeat the entire process with new data sets for 
robustness, choosing the best available at that point in time.  
WP1 summary: This WP will involve 1) data preparation 2) application of the learning algorithms 
to yield the deliverable of a BBN representing the domain which will then form the basis for 
argument generation and evaluation.  
 
WP2: Automated argument generation and evaluation 
Some of the recent examples of argument generation from BBNs resulted from the BARD project 
(Cruz et al., 2020; Dewitt et al., 2018; Liefgreen et al., 2018; Nicholson et al., 2020; Phillips et al., 
2018; Pilditch et al., 2018; Pilditch et al., 2019). This project has set as its goal the development 
of assistive technology that could facilitate group decision-making in an intelligence context. To 
this end, BARD provided a graphical user interface enabling intelligence analysts to represent 
arguments as BBNs and allowing them to examine the impact of different pieces of evidence on 
arguments. An essential component of BARD is an algorithm for generating natural language 
explanations of inference in a BBN, or more specifically, an explanation of evidence propagation 
in a BBN. This algorithm builds on earlier work by Zukerman and colleagues that have sought to 
use BBNs to generate arguments (Zukerman et al., 1998; Zukerman et al., 1999). The algorithm 
uses an evidence-to-goal approach to generate explanations for a BBN. An explanation starts 
with the given pieces of evidence and traces paths that describe their influence on intervening 
nodes until the goal is reached. In essence, the algorithm adopts a causal interpretation of the 
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links between the connected nodes, finds a set of rules that describe causal relations in a BBN, 
and calculates all paths between evidence nodes and target nodes and builds corresponding 
trees in order to determine the impact of evidence on target nodes. 
Although this and similar algorithms are a big step towards generating arguments and 
explanations from BBNs, there are at least two problems related to these algorithms: (1) The 
algorithm retains difficulties in coping adequately with soft evidence. Namely, the current versions 
of the algorithm are not able to calculate the impact of evidence that has been learnt with 
probability less than 1. (2) The explanations and arguments generated by the algorithm are not 
aimed specifically at what a human user might find hard to understand, i.e. the interactions 
between variables that often have counterintuitive effects (for psychological evidence to this effect 
see for example Dewitt et al. 2018; Liefgreen et al. 2018; Phillips et al. 2018; Pilditch et al. 2018; 
Pilditch et al. 2019; Tešić et al. 2020). What is needed is an algorithm that provides explanations 
that human users can understand. The goal of this work package is to develop algorithms that 
solve these problems.  
To do so, we need a combination of conceptual, empirical and formal approaches. Problem (1) 
requires the exploration of updating methods that differ from Bayesian conditonalization (“Bayes 
Rule”). A straightforward generalization of Bayes Rule is Jeffrey conditonalization. However, this 
rule cannot be used if additional constraints apply and the so-called rigidity condition is violated 
(Talbott 2016). Such constraints (e.g. that certain marginal or conditional probabilities are kept 
fixed) are quite typical in complex argumentation situations and require a more sophisticated 
formal treatment. We propose to use the distance-based approach to Bayesianism developed in 
Eva, Hartmann, and Rafiee Rad (2020).  
According to this approach, one considers an agent who has a prior probability distribution P over 
a set of variables who then learns some new information. This information is translated into a 
probabilistic constraint on the new distribution Q. For example, if the agent learns that E is the 
case, then Q(E) = 1. If the agent learns that the new probability of E is e’ < 1, then Q(E) =  e’ < 
1.To determine the full new distribution Q, the agent then minimizes an f-divergence between Q 
and P. Interestingly, if the only constraint that applies is Q(E) =  e’, then one recovers Jeffrey 
Conditionalization for all f-divergencies. The power of the approach, however, lies in its potential 
to deal with more complex evidential situations in which, e.g., the probability values of various 
other variables are kept fixed or a conditional probability is set to a new value (thus violating the 
rigidity condition). Using this approach is normatively justified (Eva et al., 2020) and has already 
been successfully applied to the problem of Bayesian argumentation (Eva and Hartmann, 2018). 
We therefore expect the approach to successfully address problem (1). However, the f-
divergencies approach is computationally much more expensive than conditionalization. Hence it 
is one of the challenges of WP2 to make its algorithmic implementation more efficient.   
To address problem (2), we will empirically evaluate the outputs of existing algorithms which will 
not only give us an insight into how human users perceive these outputs, but also inform the 
development of new versions of argument generation algorithms. Further inspiration for the 
development of new algorithms will come from the literature in cognitive science and in the 
philosophy of science on what a good explanation is. Several decades of research in these fields 
have brought on significant insights on what would or would not make an explanation a good one. 
Most relevant in this context is the work by Tanya Lombrozo and collaborators (cognitive science), 
e.g. Lombrozo and Vasilyeva (2017), and James Woodward (philosophy), esp. Woodward (2003). 
To arrive at better algorithms, we expect a back-and-forth between new proposals (informed by 
empirical and conceptual considerations) and empirical studies, in a cyclical process of 
development. In short, WP2 represents the conceptual heart of the whole project and will, in one 
form or other, be a focal point throughout the duration of the project.  
Summary WP2: This work package will generate as deliverables a set of metrics and algorithms 
for argument generation and evaluation, which can be compared with human judgments of 
argument quality.  
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WP3: Empirical (user) judgment of arguments: Building the tools 
We will build an integrated web environment for testing both individual arguments, and for 
examining the success of arguments in debate, thus breaking new ground toward the introduction 
of a range of new ecologically valid measures into argument evaluation.  
There is now a sizable body of research spanning more than 15 years which has used scenario-
based, behavioral experiments to examine the extent to which lay arguers share the quality 
considerations explicated by the Bayesian, probabilistic framework (see for a review, Hahn, 
2020). In WP3, we will use these methods to examine the extent to which our algorithmic 
evaluations of argument quality and our algorithmically generated arguments match human 
intuition. 
However, we will also move to break new methodological ground here. Public debate involves 
arguments and argumentative exchanges that are aimed not just at a specific addressee, but also 
at a wider audience that is following the argumentative exchange. This prompts the need for 
theorizing about ‘argumentative success’ beyond the immediate dialectical exchange of a 
proponent and opponent. Both argumentation and persuasion research have historically focussed 
on dyads—communicating pairs exchanging reasons for claims in an ongoing exchange that 
involves competing and supporting arguments that combine complex, often hierarchically nested 
ways. Researchers have sought to understand both argument ‘quality’ and persuasive ‘success’ 
within that dyadic frame of reference, developing both procedural rules for engagement and 
graphing techniques or ‘maps’ in aid of constructive argument evaluation and production (van 
Eemeren & Grootendorst, 2003; Gordon, Prakken & Walton, 2007). This scales only partly to 
contexts with multiple, and possibly large numbers of communicating agents (see also Bonevac, 
2003; Lewinski & Aakhus, 2014). To study this, we will set up a new social media-like forum in 
which participants are invited to debate specified topics (see e.g., Becker, Brackbill & Centola, 
2017). Debates can then be ‘seeded’ with particular arguments for evaluation. Specifically, one 
can track not only how these arguments fare subsequently (are they taken up by others?, are 
they subject to rebuttal?, how many likes do they receive?). Hence the forum will provide a 
platform for the collection of important qualitative and quantitative data.  
We will combine survey tools for scenario-based analysis and this new forum into a single, 
integrated environment for argument quality evaluation, thus producing a new, multi-purpose 
research tool for argumentation research. Technically, this can be achieved by bundling survey 
software with available toolboxes for interactive comment pages such as the GD bbPress Toolbox 
Pro for Wordpress. 
Summary WP3: This work package will provide as a deliverable an integrated environment for 
testing human participants’ judgments of argument quality, both explicitly and implicitly; this 
environment will comprise two components, a survey tool for explicit scenario-based evaluation, 
and a debate forum for implicit assessment of argument quality. This tool will not only support our 
own subsequent testing but will be made available to other researchers. 
 
WP4: Empirical (user) judgment of arguments: Testing automatically generated argument 
generation and evaluation 
Empirical testing of outputs of AI systems has been a common place in certain domains of AI 
such as recommender systems for decades now (Zhang and Chen, 2020). In our project we will 
similarly use the integrated web environment to empirically evaluate the automatically generated 
arguments from BBNs. More specifically, we will test the generated arguments by analyzing how 
people using the web environment judge the quality of these arguments. The participants in the 
experiments will be recruited from online participant recruiting platforms such as Amazon 
Mechanical Turk and Prolific Academic. They will be provided with monetary compensation.  
The results of this empirical evaluation clarify how the general population judges the quality of the 
generated arguments, thus informing potential improvements of the algorithms for the generations 
of these arguments. This is important from both a psychological aspect of understanding of 
argument evaluation and the computer science aspect of algorithm development. Specifically, on 
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the topic of arguments learned from the economic data, we will conduct two scenario-based 
survey studies and two debate runs. In these debate runs, participants are free to introduce 
whatever arguments they see fit, but the research assistant will also ‘feed in’  the critical 
arguments we want evaluated. We will then be able to track how these arguments fared. 
Summary WP4: This work package will 1) develop measures for implicit argument quality 
evaluation in a debate context (including, e.g., “likes”, “uptake”) and 2) conduct 8 behavioral 
studies (N = 80 participants to achieve sufficient power for statistical analysis). On each topic, 
there will be two scenario-based studies and two debates.  
Research methods. This project will make use of and combine a wide variety of methods, 
ranging from formal modelling techniques, machine learning and psychological experimentation 
to conceptual analysis. The success of the project will depend on the skilled combination of these 
methods. The applicant and the proposed Mercator Fellow have used these methods in previous 
investigations (e.g. in Collins et al., 2020 and Hahn & Hartmann, 2020) and therefore expect to 
successfully carry out the proposed research. 
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