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1 Cardinality

One of Cantor’s central motivations when he inaugurated the mathematical study of sets was
to explore the relative sizes or cardinalities of sets, in particular, infinite or transfinite sets.

1.1 Functions

To give Cantor’s central definitions, we must begin with some terminology for discussing
functions:

• A binary relation is a set of ordered pairs.

• A binary relation R is a (unary) function if whenever (x, y) ∈ R and (x, z) ∈ R, we
have y = z.

• Given a function f :

– The domain of f is {x : ∃y[(x, y) ∈ f ]}
– The range of f is {y : ∃x[(x, y) ∈ f ]}

• If f is a function and x is in the range of f , we write f(x) for the unique y such that
(x, y) ∈ f .

• If f : a → b, then we say that f is one-one or injective if, for every x, y ∈ a, if x 6= y,
then f(x) 6= f(y).

• If f : a → b, then we say that f is onto or surjective if, for every y ∈ b, there is x ∈ a
such that f(x) = y. That is, the range of f is b.

• If f : a→ b, then we say that f is a one-one correspondence or bijective if f is one-one
and onto: that is, injective and surjective.

1.2 Definition of cardinality

Definition 1.1 Given two sets a and b, we say that a is the same size as b iff there is a
bijective function f : a→ b. We write a ∼= b.

Definition 1.2 Given two sets a and b, we say that b is at least as big as a iff there is an
injective function f : a→ b. We write a ≤ b.
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Definition 1.3 Given two sets a and b, we say that a is strictly smaller thanb iff a ≤ b and
b 6≤ a. We write a < b.

Theorem 1.4 (Cantor-Bernstein-Schröder) If a ≤ b and b ≤ a, then a ∼= b.

1.3 Some cardinality facts

Notation:

• N is the set of natural numbers. I.e.

N = {0, 1, 2, . . .}.

• Q is the set of rational numbers. I.e.

Q = {im
n

: i ∈ {−1, 1} and m,n ∈ N and n 6= 0 and m,n coprime}

• R is the set of real numbers.

Theorem 1.5 N ∼= {x ∈ N : x is even}

Proof. Define f : N→ {x ∈ N : x is even} as follows: f(n) = 2n. Then f is bijective. 2

Theorem 1.6 N ∼= Q

Proof. Define f : N→ Q using the following diagram:
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Let f(1) = 1
1 , f(2) = −1

1 , f(3) = 1
2 , f(4) = 1

3 , and so on. Whenever you come to a rational
that has already been taken by an earlier number, skip over it and take the next one that
hasn’t been taken. Then f is a bijection. 2
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Theorem 1.7 (Cantor) N < R

Proof. Define f : N → R by f(n) = n. Then f is a bijection. So N ≤ R. Now suppose, for
the sake of contradiction that there is a bijection g : N→ R. Then write:

g(0) = 3.7898234 . . .

g(1) = 8.0912384 . . .

g(2) = 2.0982348 . . .

...
...

...

Then, for every real r, there is a natural n such that g(n) = r. Now define a real number r∗

using the following algorithm:

• Let the number before the decimal point in r∗ be 0.

• Let the first number after the decimal point in r∗ be given by taking the first number
after the decimal point in g(0) and adding one (if the number is 9, use 0). Thus, in our
example, the first number after the decimal point in r∗ will be 8.

• Let the second number after the decimal point in r∗ be given by taking the second
number after the decimal point in g(1) and adding one (if the number is 9, use 0).
Thus, in our example, the first number after the decimal point in r∗ will be 0.

• Let the third number after the decimal point in r∗ be given by taking the third number
after the decimal point in g(2) and adding one (if the number is 9, use 0). Thus, in our
example, the third number after the decimal point in r∗ will be 9.

• And so on.

This gives us a number that cannot possibly be in our list, since it differs from g(0) in the
first digit after the decimal point, from g(1) in the second digit after the decimal point, and
so on. Thus, there is no n such that g(n) = r∗. We have a contradiction. Thus, there is no
bijection between N and R. 2

There is another, more general way to see this point.

Definition 1.8 Suppose x is a set. Let 2x := {f : x→ {0, 1}}.

Theorem 1.9 P(x) ∼= 2x

Proof. Define the following function f : P(x)→ 2x. For y ⊆ x, let f(y) be the characteristic
function χy : x→ {0, 1} of y. That is,

χy(z) =

{
0 if z 6∈ y
1 if z ∈ y

Then f is a bijection. 2

Theorem 1.10 R ∼= 2N

Proof. Define f : R → 2N as follows: for real number r, f(r) is the function from N into
{0, 1} that gives the infinite binary expansion of r. This is a bijection. 2
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Theorem 1.11 (Cantor) For all x, x < P(x).

Proof. Define f : x → P(x) as follows: For z ∈ x, f(z) = {z}. Now suppose there is a
bijection g : x→ P(x). Then define the following subset y ⊆ x:

y := {z ∈ x : z 6∈ g(z)}.

Now suppose that there is z ∈ x such that g(z) = y. Now, suppose z ∈ g(z) = y. Then,
by definition, z 6∈ g(z) = y. On the other hand, suppose z 6∈ g(z) = y. Then, by definition,
z ∈ g(z) = y. Thus, we have z ∈ y ↔ z 6∈ y, which is a contradiction. 2

The power of this result is that it provides us with a way of producing larger and larger sets.
It also gives rise to Cantor’s Continuum Hypothesis (CH):

(CH) There is no set x such that N < x < R.

This claim cannot be proved or disproved in standard set theory. It is independent of the
ZFC axioms. Gödel proved that ZFC 6` ¬CH; Cohen proved that ZFC 6` CH.

2 Cumulative hierarchy

The other upshot of Cantor’s Theorem is that it suggests the cumulative hierarchy picture of
the universe of sets.

2.1 Ordinals

Definition 2.1 (Well-ordering) A relation ≤ on a set S is a well-ordering if it has the
following properties:

(i) If a ≤ b and b ≤ a, then a = b. (Anti-symmetry)

(ii) If a ≤ b and b ≤ c, then a ≤ c. (Transitivity)

(iii) For all a, b ∈ S, a ≤ b or b ≤ a. (Totality)

(iv) For all non-empty subsets A ⊆ S, there is a ≤-least element of A. (Well-ordering)

Definition 2.2 Two well-orderings (S,≤S) and (T,≤T ) have the same order type if there is
a bijection f : S → T such that

a ≤S b⇔ f(a) ≤T f(b)

We write (S,≤S) ∼= (T,≤T ).

Definition 2.3 A set S is a von Neumann ordinal if:

(i) S is transitive (that is, if x ∈ S, then x ⊆ S).

(ii) S is well-ordered by ∈.

Theorem 2.4 (ZF) If (S,≤) is a well-ordering, then there is a von Neumann ordinal x such
that

(S,≤) ∼= (x,∈)
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This theorem shows that we won’t go wrong if we simply let the von Neumann ordinals be
our privileged exemplars of well-orderings and discuss everything to do with well-orderings in
terms of them alone.

Definition 2.5 (Cumulative hierarchy) Define:

V0 = ∅
Vα+1 = P(Vα)

Vλ =
⋃
α<λ

Vα

Theorem 2.6 For λ < κ, Vλ ⊆ Vκ.

Theorem 2.7 (ZF) For all sets x, there is an ordinal α such that x ∈ Vα.

This gives us the following characterization of the universe of sets:

V =
⋃
α

Vα

Note that, by Cantor’s Theorem, we have Vα < Vα+1.

3 Axiom of Choice

So far, everything we have said has been provable using only the Zermelo-Fraenkel axioms.
But they are not powerful enough to prove a principle that is often required in mathematics.
This is called the Axiom of Choice (AC):

Axiom 1 (Axiom of Choice) For every set X of non-empty sets, there is a function f :
X →

⋃
X such that, for all non-empty sets x ∈ X, f(x) ∈ x.

That AC is independent of ZF was proved by Gödel and Cohen: Gödel showed that ZF 6` ¬AC
using the method of inner models; Cohen showed that ZF 6` AC using the method of forcing.

The power of AC is witnessed by the string of important mathematical principles to which
it is equivalent:

Theorem 3.1 The following propositions are equivalent (relative to ZF):

• The Axiom of Choice

• The Well-Ordering Principle: Every set can be well-ordered.

• Zorn’s lemma: Every non-empty partially ordered set in which every chain (i.e. totally
ordered subset) has an upper bound contains at least one maximal element.

• Every vector space has a basis.
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