Bayesian epistemology I: Probabilism and its Dutch Book argument

Richard Pettigrew

May 9, 2012

We wish to:

- (i) present a **model** of an agent's *doxastic* or *credal* states;
- (ii) state norms that govern those states in terms of our model;
- (iii) give arguments in favour of those norms.

1 The model

Represent an agent's credal state at a given time *t* by a *credence function*

 $c_t: \mathcal{F} \to [0,1].$

where \mathcal{F} is the algebra of propositions about which the agent has an opinion.¹

- If $A \in \mathcal{F}$, then $c_t(A) = 0$ iff the agent has minimal credence in A at t.
- If $A \in \mathcal{F}$, then $c_t(A) = 1$ iff the agent has maximal credence in A at t.

Note: It is an empirical assumption that agents are capable of maximal and minimal credences; it is not a normative claim.

2 The norms

There are two types of norms:

- *Synchronic norms* concern the properties of a credence function at a given time.
- *Diachronic norms* concern the relationship between credence functions at different times.

¹Since \mathcal{F} is an algebra, it is closed under conjunctions, disjunctions, and negations.

2.1 Synchronic norms

At any time t in her epistemic life, an agent ought to have a credence function c_t such that

• **Probabilism** *c*^{*t*} is a probability function.

That is,

−
$$c_t(\bot) = 0$$
 and $c_t(\top) = 1$.

- $c_t(A \lor B) = c_t(A) + c_t(B)$ if *A* and *B* are mutually exclusive.
- **Countable additivity** *c*^{*t*} is countably additive.

That is, if \mathcal{F} is infinite,

- $c_t(\bigcup_n A_n) = \sum_n c_t(A_n)$ if A_1, A_2, \ldots are pairwise mutually exclusive.
- **Regularity** If $A \not\equiv \top$, then $c_0(A) < 1$.
- Principal Principle For any probability functon ch,

 $c_t(A \mid The ur-chance function is ch) = ch(A|E_t)$

where E_t is the agent's total evidence at t.²

• **Reflection Principle** For any t' > t,

 $c_t(A \mid My \text{ credence function at } t' \text{ is } c_{t'}) = c_{t'}(A)$

2.2 Diachronic norms

For any two times t' > t in an agent's epistemic life, an agent ought to have credence functions c_t and $c_{t'}$ such that

• **Bayesian Conditionalization** $c_{t'}(A) = c_t(A|E_{t'})$ where $E_{t'}$ is the agent's total evidence at t'.

$$c_t(A|B) = \frac{c_t(A \land B)}{c_t(B)}$$

²Conditional probabilities are given by the so-called Ratio Formula: