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First-order logic is a powerful and expressive system which has been used to formalise many
basic systems of mathematics, including set theory, arithmetic, and the real closed field. It has
been intensively studied since the early 20th century. Here we present two of the most important
metalogical results about first-order logic: the compactness and Löwenheim–Skolem theorems.

As well as defining the notions required to state and prove these theorems, we shall examine
some of their philosophical impact, which has made itself felt not only in logic and philosophy
of mathematics but also in the philosophy of language.

1 The compactness theorem

The compactness theorem was originally proved by Gödel [1930] as a corollary to his completeness
theorem for first-order logic.

Lemma 1.1. (Completeness) If S is a consistent set of sentences then S has a model.

Theorem 1.2. (Compactness) Let S be a set of wffs of first-order logic. If every finite subset of
S is satisfiable, then S is satisfiable.

Proof. Consider the contraposition of compactness: if S is not satisfiable, then there is a finite
subset of S which is not satisfiable. So assume that S is not satisfiable: there is no structure A
such that A |= S. We thus merely need to prove that there exists a finite subset S′ ⊆ S such
that S′ is not satisfiable.

By lemma 1.1, if S is consistent then S has a model. So if S has no model then S is
inconsistent. For a theory to be inconsistent is just for it to prove a contradiction—that is, there
is some wff ψ such that S ` ψ ∧ ¬ψ. Consider a proof witnessing this statement,1

Θ = 〈θ1, . . . , θn〉

for n ∈ N. Since Θ must be finitely long, only finitely many θi can appear in it such that
θi ∈ S. Let S′ be the set of wffs of S which appear in Θ. S′ must also be finite, and of course
S′ ` ψ ∧ ¬ψ, so S′ is inconsistent, and thus is a finite subset of S which is not satisfiable.

There are also purely model-theoretic proofs of the compactness theorem—see for example
Hodges 1997, pp. 125–127.

∗Much of this material was adapted from Wilfrid Hodges’s excellent textbook, A Shorter Model Theory. Special
thanks are due to Kate Hodesdon and Paul Ross for their invaluable input and feedback.

1The term ‘witness’ means an object satisfying an existential assertion.

1



1.1 Applications of compactness

The compactness theorem is a model-existence theorem: it says that given that some condition
holds, there exists a model with certain properties. A simple application of the theorem is
showing that given the consistency of some theory, non-standard models of that theory exists.
This is easily seen in the case of arithmetic.

Lemma 1.3. There exists a model of first-order Peano Arithmetic, PA, which is not isomorphic
to the standard model.

Proof. Add a new constant symbol e to the language of arithmetic and for each numeral n̄ add
the sentence n̄ < e to the axioms of PA to obtain the new theory S. Any finite T ⊆ S is satisfied
by the usual natural number structure N by interpreting the constant e as some number larger
than any numeral employed in the sentences of T . So by compactness, S has a model M which
contains an element eM greater than any standard natural number. As PA is a subtheory of S,
M is also a model of PA.

Compactness is also useful for proving that certain classes of structures are finitely axioma-
tisable; for details see van Dalen 2004, pp. 114–116. However, the best-known application of
compactness is in proving the upward direction of the Löwenheim–Skolem theorem.

2 The Löwenheim–Skolem theorem

From the compactness theorem we first learn about non-standard models: structures which
satisfy a first-order theory S and yet are not isomorphic to the intended interpretation. Non-
standard models of arithmetic bring this out quite forcefully: these strange structures are nothing
like we näıvely expect from a theory which seems, in its essentials, so transparent.

One aspect of this is cardinality: we think of arithmetic as inherently describing a countable
structure, and indeed our very notion of a set being countable is that it can be put into a one-
to-one correspondence with the natural numbers. But not only are there uncountable models
of first-order theories such as Peano Arithmetic, but there are arbitrarily large models of every
first-order theory.

Perhaps even more surprisingly, no matter how large the intended model of a first-order
theory is, it also has a countable model. This result was originally proved in 1915 by the German
mathematician Leopold Löwenheim. A simpler and more general proof was given in 1920 by the
Norwegian logician Thoralf Skolem [Löwenheim 1915; Skolem 1920].

2.1 Some model theory

In order to state the theorem in its full generality we need a few definitions from model theory,
which allow us to characterise languages and structures in a more fine-grained way. By convention
for a structure A we add a superscript to denote an element, function or relation belonging to
that structure. For instance, given a constant c we would denote its referant in A by cA.

2.1.1 Languages, names and theories

The languages we have discussed so far have all been countable—that is, their formulae can
be enumerated by assigning a unique natural number to each formula. However, it is often
convenient to be able to add new non-logical symbols to a language—perhaps even uncountably
many of them. Under some circumstances we thus need to pay heed to the cardinality of a
language: roughly speaking, how many different formulae it includes.
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Definition 2.1. Two formulae are variants of one another if they differ only in their choice
of variable names—that is, if one can be obtained from the other by a uniform substitution of
variables. ϕ(x1, . . . , xn) is a variant of ϕ(y1, . . . , yn), and vice versa, while ∀x(P (x)) is a variant
of ∀y(P (y)).

Definition 2.2. The cardinality of a first-order language L, |L|, is the number of equivalence
classes of formulae of L under the relation of being variants.

Lemma 2.3. Let L be a first-order langauge and let κ be the number of non-logical symbols of
L. Then |L| = ω + κ = max {ω, κ}.

Proof. Exercise.

Definition 2.4. Let L be a first-order language and A an L-structure. Then the theory of A,
Th(A), is the set of all sentences ϕ of L such that A |= ϕ.

Definition 2.5. Suppose we have two signatures, L− and L+, and that L− ⊆ L+. Then if A is
an L+-structure we can transform it into an L−-structure by forgetting the symbols of L+ which
don’t appear in L−. This gives us the L−-reduct of A, A|L−.

2.1.2 Extensions and elementarity

We now look at the relations structures can bear to one another. These notions from model
theory are common currency in logic and philosophy of mathematics, and worth learning for
their own sake, but here we use them to prove stronger versions of our goal theorems.

We denote n-tuples of constants, variables and elements 〈a1, . . . , an〉 as c̄, x̄, ā and so on. In
the case of a function applied to a tuple, fā, we mean 〈f(a1), . . . , f(an)〉.

Definition 2.6. Suppose A and B are L-structures. An embedding f from A into B, f : A→ B,
is a function f from dom(A) to dom(B) obeying the following conditions.

1. f is injective.

2. For each constant c of L, f(cA) = cB .

3. For each n > 0 and each n-ary relation symbol R of L and n-tuple ā of elements of A,
ā ∈ RA ↔ fā ∈ RB .

4. For each n > 0 and each n-ary function symbol F of L and n-tuple ā of elements of A,
f(FA(ā)) = F (fā).

Definition 2.7. Given two L-structures A and B such that dom(A) ⊆ dom(B), if the inclusion
map i : dom(A) → dom(B) is an embedding then we say that B is an extension of A, or
alternatively that A is a substructure of B, A ⊆ B.

Definition 2.8. If an embedding between L-structures f : A→ B preserves first-order formulae,
A |= ϕ(ā)→ B |= ϕ(fā), then we say that f is an elementary embedding.

Suppose that B is an extension of A. If the inclusion map is an elementary embedding then
B is an elementary extension of A, or equivalently, A is an elementary substructure of B, A 4 B.

Definition 2.9. Let A be an L-structure and ā be a sequence of all elements of A. We choose
a sequence c̄ of new constants not in L to name the elements of ā. Adjoining these constants to
L gives us a new language L(c̄) and an L(c̄)-structure (A, ā) which is just A with the constants
c̄ interpreted as the constant elements ā.

Then the elementary diagram of A, eldiag(A), is Th(A, ā). In other words, it’s the set of
sentences with parameters from A that are true in A.
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Lemma 2.10. Let L be a first-order language and A an L-structure. If B |= eldiag(A), then
there is an elementary embedding of A into the reduct B|L.

Proof. See Hodges 1997, p. 49.

2.2 The upwards Löwenheim–Skolem theorem

One consequence of compactness is what is often called the upwards Löwenheim–Skolem theorem:
that given any theory S with an infinite model A, we can always expand the model to one of a
higher cardinality. The name is somewhat inappropriate, since as we shall see, Skolem rejected
the existence of uncountable sets.

Theorem 2.11. (Upwards Löwenheim–Skolem theorem) Let L be a first-order language, A an
infinite L-structure and κ a cardinal such that |L| ≤ κ and |A| ≤ κ. Then A has an elementary
extension of cardinality κ.

Proof. Providing names for the elements of A as necessary, let T = eldiag(A). Add new constants
ci to L for i < κ, obtaining the language L∗. Let S be the theory

T ∪ { ci 6= cj | i, j < κ } .

Pick an arbitrary finite U ⊆ S. Only finitely many of the new constants ci occur in the
sentences of U ; we denote them c̄. Our original structure A is infinite so we simply assign each
of the new constants to an element cAi of A. By this procedure we obtain an L(c̄)-structure A′.
Clearly A′ |= U so by compactness there is an L∗-structure B satisfying S.

B |= eldiag(A), so by lemma 2.10 there is an elementary embedding e : A→ B|L. Elementary
embeddings are injections, so we can straightforwardly replace e(xA) = xB in B|L with xA, thus
making B|L an elementary extension of A.

Since B |= S, for every pair of elements cBi and cBj with i, j < κ, cBi 6= cBj . The cardinality
of B|L is therefore at least κ. We can apply theorem 2.12 to reduce the cardinality of B|L to
exactly κ.

2.3 The downwards Löwenheim–Skolem theorem

Theorem 2.12. (Downwards Löwenheim–Skolem theorem) Let L be a first-order language, A
an L-structure and κ an infinite cardinal such that |L| ≤ κ ≤ |A|. Then A has an elementary
substructure of cardinality κ.

Proof. Omitted, but see Hodges 1997, pp. 69–72.

Combining the upward and downward parts of the theorem, we can see that in general, if a
first-order theory S has at least one infinite model, then it has models of every infinite cardinality.
This result demonstrates that first-order logic is too weak to distinguish between different infinite
cardinalities.

If we take the cumulative hierarchy picture at face value then the axioms of ZFC appear to
describe a structure containing many infinite ordinals and cardinals. The Löwenheim–Skolem
theorem demonstrates that there are many models of ZFC in which the higher reaches of the
transfinite do not appear. There are even countable models of ZFC. This seems to fly in the face
of the assertion—a theorem of ZFC—that an uncountable set exists. This phenomenon is known
as Skolem’s paradox.
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2.4 Skolem’s paradox

Skolem was a sceptic about the existence of uncountable sets, and he took the Löwenheim–
Skolem theorem as evidence that his scepticism was justified and that set-theoretic concepts
were inherently relative.

Let’s examine one instance of this conceptual relativity, by looking more closely at cardinality.
For a set Y to have a greater cardinality than another set X is just for there to be no surjective
function f : X → Y . So it is easy to see how |X| < |Y | could be true in a model M of ZFC, just
because the model didn’t include the necessary surjection, even if there were a larger structure
M ′ which did include it.

Skolem contended that to obtain something absolutely uncountable we would either have to
start with uncountably many axioms or with an axiom that could yield uncountably many first-
order propositions—in other words, higher-order quantification. However, to take either route
would be begging the question, and assuming the existence of uncountable objects in order to
prove it.

Jané [2001] is a recent article examining Skolem’s view of the relativity of set-theoretic con-
cepts, while Bays [2007] is a thorough interrogation of the mathematics of the paradox.

2.5 Putnam’s model-theoretic argument

Hilary Putnam [1980] famously put Skolem’s paradox to work in the philosophy of language,
arguing that the relativity of set-theoretic concepts is also a problem for concepts expressed
in natural language, and for scientific theories. Because no first-order theory with an infinite
model can determine its interpretation up to isomorphism, the theoretical constraints given by
the theory cannot determine reference. Neither can operational constraints since these are “just
more theory”.

For Putnam, this indeterminacy of interpretation only arises given a bad way of thinking
about theories. Taking truth to be truth in an intended model and taking intended models to be
those satisfying sentences which we want to come out true will always give us too many models.
But stipulating sentences to be satisfied is the wrong way to go about fnding intended models,
since in order to obtain the sentences that comprise our ideal theory we must already have an
interpretation of the language they’re expressed in. Thus, even generating Skolemite problems
for our own language requires fixity of reference.

These considerations led Putnam to reject metaphysical realism and endorse a Dummetian,
anti-realist semantics.

[T]he world does not pick models or interpret languages. We interpret our languages
or nothing does.

We need, therefore, a standpoint which links use and reference in just the way that
the metaphysical realist standpoint refuses to do. The standpoint of “non-realist
semantics” is precisely that standpoint. [Putnam 1980, p. 482]

3 Lindström’s theorem

Compactness and the downward Löwenheim–Skolem theorem demonstrate two important prop-
erties of first-order logic. The Swedish logician Per Lindström proved in the 1960s that first-order
logic is maximal with respect to these properties: it is the strongest logic which has both the
compactness property and the downwards Löwenheim–Skolem property.2

2For a proof of the theorem, see Väänänen [2010], which is available online.
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Put another way, any logic which goes beyond first-order must distinguish between infinite
cardinalities: there must be sentences that have models of some infinite cardinalities but not
others, and thus make non-trivial assertions about our background ontology, usually taken to be
the cumulative hierarchy of sets.

The obvious example of such a logic is second-order logic, which allows us to provide a
categorical axiomatisation of the natural number structure, ruling out models of cardinality
greater than ω, and also a quasi-categorical axiomatisation of set theory where the only set-sized
models are proper initial segments of V satisfying certain closure constraints.

However, second-order logic has significant technical disadvantages compared to first-order
logic. In particular, it does not admit a complete proof theory. Many philosophers have also
shied away from the additional conceptual and ontological commitments thought to be entailed
by quantification over properties, although in recent decades this has changed somewhat and
second-order logic has become more acceptable.
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